Section 2.6. Matrices

Note. In this section we review some properties of matrices from Linear Algebra and define the "Boolean product" of two matrices with entries of 0 and 1.

Definition 2.6.1. A *matrix* is a rectangular array of numbers. A matrix with m rows and n columns is an $m \times n$ matrix. Two matrices are *equal* if they are the same size and corresponding entries are equal.

Definition 2.6.2. Let

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
$$

.

The *i*th row of A is the $1 \times n$ matrix $[a_{i1} \ a_{i2} \ \cdots \ a_{in}]$. The *j*th column of A is the $m \times 1$ matrix $\sqrt{ }$ $\left| \right|$ \perp $\overline{}$ $\overline{}$ $\overline{}$ $\left| \right|$ \mathbf{I} 1_{1j} a_{2j} . . . a_{mj} ן \parallel \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} . The (i, j) th element or entry of A is the element a_{ij} . Sometimes we denote $A = [a_{ij}].$

Definition 2.6.3. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. The sum of A and B, denoted $A + B$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i, j) th entry.

Example. Page 159 Number 2a.

Definition 2.6.4. Let A be an $m \times k$ matrix and B a $k \times n$ matrix. The product of A and B, denoted AB, is the $m \times n$ matrix with (i, j) th entry c_{ij} where

$$
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} = \sum_{y=1}^{k} a_{it}b_{tj}.
$$

Example. Page 159 Number 4a. Notice that we do not in general have commutivity of matrix multiplication. That is, there are A and B of appropriate sizes where $AB \neq BA$.

Note. The text gives an algorithm to calculate the product of two matrices. If the matrices are square of size $n \times n$ then it requires n^3 multiplications and $n^2(n-1)$ additions (and so is $O(n^3)$).

Definition 2.6.5. The *identity matrix of order n* is the $n \times n$ matrix $I_n = [\delta_{ij}]$ where

$$
\delta_{ij} = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j. \end{cases}
$$

Note. If A is $m \times n$ then $A\mathcal{I}_n = \mathcal{I}_m = A$.

Definition 2.6.6. Let $A = [a_{ij}]$ be an $m \times n$ matrix. The *transpose* of A, denoted A^T , is an $n \times m$ matrix obtained by interchanging the rows and columns of A. That is, $A^T = [b_{ij}]$ where $b_{ij} = a_{ji}$.

Example. Page 160 Number 16.

Definition 2.6.7. A matrix A is symmetric if $A = A^T$.

Definition. In a square matrix, the elements a_{ii} form the *diagonal* of A.

Definition 2.6.8. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices all of whose entries are either 0 or 1. The *join* of A and B, denoted $A \vee B$, is the matrix with (i, j) th entry $a_{ij} \vee b_{ij}$. Recall

$$
a_{ij} \vee b_{ij} = \begin{cases} 1 \text{ if } a_{ij} = 1 \text{ or } b_{ij} = 1 \\ 0 \text{ otherwise.} \end{cases}
$$

The meet of A and B, denoted $A \wedge B$, is the matrix with (i, j) th entry $a_{ij} \wedge b_{ij}$. Recall

$$
a_{ij} \wedge b_{ij} = \begin{cases} 1 \text{ if } a_{ij} = b_{ij} = 1 \\ 0 \text{ otherwise.} \end{cases}
$$

Example. Page 160 Number 28.

Definition 2.6.9. Let $A = [a_{ij}]$ be an $m \times k$ "zero-one" matrix and $B = [b_{ij}]$ be a $k \times n$ "zero-one" matrix. Then the *Boolean product* of A and B, denoted $A \odot B$ is the $m \times n$ matrix with (i, j) th entry c_{ij} where

$$
c_{ij}=(a_{i1}\wedge b_{1j})\vee (a_{i2}\wedge b_{2i})\vee \cdots \vee (a_{ij}\vee b_{kj}).
$$

Examples. Page 161 Numbers 30 and 36.

Definition 2.6.10. Let A be a square zero-one matrix and let R be a positive integer. The *r*th *Boolean power* of A, denoted $A^{[r]}$, is

$$
A^{[r]} = \underbrace{A \odot A \odot A \odot \cdots \odot A}_{r \text{ times}}.
$$

Note. The Boolean powers of A will be used in our study of paths in graphs. The text gives an algorithm for calculating Boolean products of graphs on page 158.

Revised: 4/3/2019