Section 4.4. Discrete Probability

Note. In this section we apply some of our counting results to probability.

Definition. An *experiment* is a procedure that yields one of a given set of possible outcomes. The *sample space* of the experiment is the set of possible outcomes. An *event* is a subset of the simple space.

Definition 4.4.1. The *probability* of an event E, which is a subset of a finite sample space S of equally likely outcomes, is p(E) = |E|/|S|.

Example. Page 261 Example 2.

Example. In a lottery, 6 numbers are chosen from a set of 43 numbers. What is the probability that you match all 6 numbers? 5? 4? 3? 2? 1? 0?

Theorem 4.4.1. Let E be an event in a simple space S. The probability of the event $\overline{E} = S \setminus E$, the complement of event E, is $p(\overline{E}) = 1 - p(S)$.

Example. In a room of 25 students chosen at random, what is the probability that at least two students share the same birthday?

Theorem 4.4.2. Let E_1 and E_2 be events in sample space S. Then

$$p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2).$$

Examples. Page 266 Numbers 12 and 34.

Revised: 4/4/2019