Section 6.5. Equivalence Relations

Note. In this section we define an equivalence relation on a set and show that the equivalence classes of such a relation partition the set on which it is defined (this is done in Theorem 6.5.2). The will play a large role in Introduction to Modern Algebra (MATH 4127/5127).

Definition 6.5.1. A relation on a set A is an equivalence relation if it is reflexive $((a,a) \in R)$, symmetric $((a,b) \in R \Leftrightarrow (b,a) \in R)$, and transitive $((a,b),(b,c) \in R \Rightarrow (a,c) \in R)$.

We can represent relations with 01 matrices. Define for relation R matrix $M_R = [m_{ij}]$ where

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, b_j) \in R \\ 0 \text{ if } (a_i, b_j) \notin R. \end{cases}$$

Example. Page 409 Example 4. Let $m \in \mathbb{N}$, m > 1. Prove that

$$R = \{(a, b) \mid a \equiv b \pmod{m}\}$$

is an equivalence relation on \mathbb{Z} .

Definition 6.5.2. Let R be an equivalence relation on set A. The set of all elements that are related to $a \in A$ is the *equivalence class of* a, denoted $[a]_R$.

6.5. Equivalence Relations

2

Theorem 6.5.1. Let R be an equivalence relation on set A. The following are

equivalent:

1. *aRb*,

2. [a] = [b], and

3. $[a] \cap [b] \neq \emptyset$.

Definition. A partition of a set S is a collection of disjoint nonempty subsets of

S that union to give S.

Theorem 6.5.2. Let R be an equivalence relation on set S. Then the equivalence

classes of R form a partition of S. Conversely, given a partition of S there is a

relation R with equivalence classes the same as the sets in the partition.

Examples. Page 413 Numbers 12 and 26.

Revised: 4/6/2019