Section 7.2. Graph Terminology

Note. In this section we increase our vocabulary concerning graphs.

Definition 7.2.1. Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if $\{u,v\}$ is an edge of G. If $e = \{u,v\}$, then edge e is incident with vertices u and v. Edge e is said to connect u and v. Vertices u and v are endpoints of edge $\{u,v\}$.

Definition 7.2.2. The *degree* of a vertex, denoted deg(v), in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

Theorem 7.2.1. The Hand Shaking Theorem.

Let G = (V, E) be an undirected graph with e edges. Then $2e = \sum_{v \in V} \deg(v)$.

Example. Page 454 Number 6.

Theorem 7.2.2. An undirected graph has an even number of vertices of odd degree.

7.2. Graph Terminology

2

Definition 7.2.3. When (u, v) is an arc of digraph G, u is adjacent to v and v is adjacent from u. u is the initial vertex and v is the terminal vertex of arc (u, v).

Definition 7.2.4. In a digraph, the *in-degree* of a vertex v, denoted $\deg^-(v)$, is the number of arcs with v as their terminal vertex. The *out-degree* of v, denoted $\deg^+(v)$, is the number of edges with v as their initial vertex.

Example. Page 454 Number 8.

Theorem 7.2.3. Let G(V, A) be a digraph. Then

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |A|.$$

Definition 7.2.5. A simple graph G is *bipartite* if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 .

Example. Page 455 Number 14.

Definition 7.2.6. A subgraph of G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$.

7.2. Graph Terminology

3

Definition 7.2.7. The *union* of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$ and is denoted $G_1 \cup G_2$.

Example. Page 455 Number 30.

Revised: 4/6/2019