Mathematical Reasoning

Chapter 2. Sets

2.10. Mathematical Induction and Recursion-Proofs of Theorems

Introduction

 to MathematicalStructures and Proofs
Second Edition

Table of contents

(1) Theorem 2.66. The Principle of Mathematical Induction
(2) Example 2.67
(3) Theorem 2.69
(4) Example 2.70
(5) Theorem 2.71

Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction.

Let n_{0} be an integer. Suppose P is a property such that
(a) $P\left(n_{0}\right)$ is true.
(b) For every integer $k \geq n_{0}$, the following conditional statement is true:

If $P(n)$ is true for every n satisfying $n_{0} \leq n \leq k$, then $P(k+1)$ is true.
The $P(n)$ is true for every integer $n \geq n_{0}$.
Proof. We give a proof by contradiction. ASSUME $P(n)$ is not true for every integer $n \geq n_{0}$. That is, assume there is some integer $m \geq n_{0}$ for which $P(m)$ is false. By hypothesis (a) we have $m=n_{0}+t$ for some $t \geq 1$. Let t be the least natural number for which $P\left(n_{0}+t\right)$ is false; such a t exists by the Well-Ordering Principle on the natural numbers.

Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction.

Let n_{0} be an integer. Suppose P is a property such that
(a) $P\left(n_{0}\right)$ is true.
(b) For every integer $k \geq n_{0}$, the following conditional statement is true:

If $P(n)$ is true for every n satisfying $n_{0} \leq n \leq k$, then $P(k+1)$ is true.
The $P(n)$ is true for every integer $n \geq n_{0}$.
Proof. We give a proof by contradiction. ASSUME $P(n)$ is not true for every integer $n \geq n_{0}$. That is, assume there is some integer $m \geq n_{0}$ for which $P(m)$ is false. By hypothesis (a) we have $m=n_{0}+t$ for some $t \geq 1$. Let t be the least natural number for which $P\left(n_{0}+t\right)$ is false; such a t exists by the Well-Ordering Principle on the natural numbers.

Theorem 2.66. The Principle of Mathematical Induction (continued)

Theorem 2.66. The Principle of Mathematical Induction.
Let n_{0} be an integer. Suppose P is a property such that
(a) $P\left(n_{0}\right)$ is true.
(b) For every integer $k \geq n_{0}$, the following conditional statement is true:

If $P(n)$ is true for every n satisfying $n_{0} \leq n \leq k$, then $P(k+1)$ is true.
The $P(n)$ is true for every integer $n \geq n_{0}$.
Proof (continued). Then every integer n where $n_{0} \leq n \leq n_{0}+(t-1)$ has property P. But then hypothesis (b) implies that the statement $P\left(\left(n_{0}+(t-1)\right)+1\right)=P\left(n_{0}+t\right)$ is true, CONTRADICTING the assumption above. So the assumption that $P(n)$ is not true for every integer $n \geq n_{0}$ is false, and hence $P(n)$ is true for every integer $n \geq n_{0}$, as claimed.

Example 2.67

Example 2.67. For every $n \in \mathbb{N}, 1+2+\cdots+(n-1)+n=\frac{n(n+1)}{2}$.
Proof. First, we establish the basis step: $P(1)=1=(1+1) / 2$.

Example 2.67

Example 2.67. For every $n \in \mathbb{N}, 1+2+\cdots+(n-1)+n=\frac{n(n+1)}{2}$.
Proof. First, we establish the basis step: $P(1)=1=(1+1) / 2$. For the induction step, we have

$$
\begin{aligned}
1+2+\cdots+(k+1)= & (1+2+\cdots+k)+(k+1) \\
= & \frac{k(k+1)}{2}+(k+1) \text { by the induction } \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{k(k+1)+2(k+1)}{2} \\
= & \frac{(k+1)(k+2)}{2} .
\end{aligned}
$$

Therefore, $P(k+1)$ is true and by the Principle of Mathematical Induction, the equality holds for all $n \in \mathbb{N}$.

Example 2.67

Example 2.67. For every $n \in \mathbb{N}, 1+2+\cdots+(n-1)+n=\frac{n(n+1)}{2}$.
Proof. First, we establish the basis step: $P(1)=1=(1+1) / 2$. For the induction step, we have

$$
\begin{aligned}
1+2+\cdots+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \text { by the induction } \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Therefore, $P(k+1)$ is true and by the Principle of Mathematical Induction, the equality holds for all $n \in \mathbb{N}$.

Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set $P(S)$ has 2^{n} elements.

Proof. We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $P(\varnothing)=\{\varnothing\}$ so that the power set of \varnothing has $2^{n_{0}}=2^{0}=1$ elements.

Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set $P(S)$ has 2^{n} elements.

Proof. We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $P(\varnothing)=\{\varnothing\}$ so that the power set of \varnothing has $2^{n_{0}}=2^{0}=1$ elements. The induction hypothesis is that a set with k elements has a power set with 2^{k} elements. Let S be a set with $k+1$ elements. Fix an element $s_{0} \in S$. Then $S=\left\{s_{0}\right\} \cup T$ where T has k elements. With each subset $A \subseteq T$ we associate two subsets of S, namely A and $A \cup\left\{s_{0}\right\}$, and every subset of S is of this form. So S has twice as many subsets as T. By the induction hypothesis, we then have that set S has $2 \times 2^{k}=2^{k+1}$ subsets. So the proposition holds for $k+1$, and by the Principle of Mathematical Induction the proposition holds for all
$n \geq 0$.

Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set $P(S)$ has 2^{n} elements.

Proof. We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $P(\varnothing)=\{\varnothing\}$ so that the power set of \varnothing has $2^{n_{0}}=2^{0}=1$ elements. The induction hypothesis is that a set with k elements has a power set with 2^{k} elements. Let S be a set with $k+1$ elements. Fix an element $s_{0} \in S$. Then $S=\left\{s_{0}\right\} \cup T$ where T has k elements. With each subset $A \subseteq T$ we associate two subsets of S, namely A and $A \cup\left\{s_{0}\right\}$, and every subset of S is of this form. So S has twice as many subsets as T. By the induction hypothesis, we then have that set S has $2 \times 2^{k}=2^{k+1}$ subsets. So the proposition holds for $k+1$, and by the Principle of Mathematical Induction the proposition holds for all $n \geq 0$.

Example 2.70

Example 2.70. For every integer $n \geq 0$, the number $4^{2 n+1}+3^{n+2}$ is a multiple of 13 .

Proof. We take the proposition $P(n)$ as $4^{2 n+1}+3^{n+2}$ is a multiple of 13 . We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $4^{2(0)+1}+3^{(0)+2}=4=3^{2}=13$, as needed.

Example 2.70

Example 2.70. For every integer $n \geq 0$, the number $4^{2 n+1}+3^{n+2}$ is a multiple of 13 .

Proof. We take the proposition $P(n)$ as $4^{2 n+1}+3^{n+2}$ is a multiple of 13 . We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $4^{2(0)+1}+3^{(0)+2}=4=3^{2}=13$, as needed. The induction hypothesis is that $4^{2 k+1}+3^{k+2}=13 t$ for some integer t. Then for $n=k+1$, we have:

hypothesis
$=13\left(16 t-3^{k+2}\right)$.

Example 2.70

Example 2.70. For every integer $n \geq 0$, the number $4^{2 n+1}+3^{n+2}$ is a multiple of 13 .

Proof. We take the proposition $P(n)$ as $4^{2 n+1}+3^{n+2}$ is a multiple of 13 . We use the Principle of Mathematical Induction with $n_{0}=0$. For the basis step, we have $4^{2(0)+1}+3^{(0)+2}=4=3^{2}=13$, as needed. The induction hypothesis is that $4^{2 k+1}+3^{k+2}=13 t$ for some integer t. Then for $n=k+1$, we have:

$$
\begin{aligned}
4^{2(k+1)+1}+3^{(k+1)+2}= & 4^{(2 k+1)+2}+3^{(k+2)+1} \\
= & 4^{2}\left(4^{2 k+1}\right)+4^{2} \underbrace{\left(3^{k+2}-3^{k+2}\right)}_{0}+3\left(3^{k+2}\right) \\
= & 4^{2}\left(4^{2 k+1}+3^{k+2}\right)+3^{k+2}\left(-4^{2}+3\right) \\
= & 16(13 t)+3^{k+2}(-13) \text { by the induction } \\
& \text { hypothesis } \\
= & 13\left(16 t-3^{k+2}\right) .
\end{aligned}
$$

Example 2.70 (continued)

Example 2.70. For every integer $n \geq 0$, the number $4^{2 n+1}+3^{n+2}$ is a multiple of 13 .

Proof (continued). So $4^{2 n+1}+3^{n+2}$ is a multiple of 13 when $n=k+1$, and the claim holds for $n=k+1$. By the Principle of Mathematical Induction the proposition holds for all $n \geq 0$, as claimed.

Theorem 2.71

Theorem 2.71. Every integer $n \geq 2$ is a product of primes numbers.
Proof. We take the proposition $P(n)$ as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_{0}=2$. For the basis step, we have that $n=2$, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \leq t \leq k$; here we use the Strong Principle of Mathematical Induction.

Theorem 2.71

Theorem 2.71. Every integer $n \geq 2$ is a product of primes numbers.
Proof. We take the proposition $P(n)$ as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_{0}=2$. For the basis step, we have that $n=2$, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \leq t \leq k$; here we use the Strong Principle of Mathematical Induction. Consider $n=k+1$. If $k+1$ is prime, the claim holds for $n=k+1$. If $k+1$ is not prime, then $k+1=a b$ with $a>1$ and $b>1$. Then $2 \leq a \leq k$ and $2 \leq b \leq k$, so by the induction hypothesis $a=p_{1} p_{2} \cdots p_{r}$ and $b=p_{r+1} p_{r+2} \cdots p_{s}$ where the P_{i} 's are prime. Then $k+1=P_{1} p_{2} \cdots p_{r} p_{r+1} p_{r+2} \cdots p_{s}$ and the claim holds for $n=k+1$. By the Principle of Mathematical Induction the proposition holds for all $n \geq 2$, as claimed.

Theorem 2.71

Theorem 2.71. Every integer $n \geq 2$ is a product of primes numbers.
Proof. We take the proposition $P(n)$ as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_{0}=2$. For the basis step, we have that $n=2$, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \leq t \leq k$; here we use the Strong Principle of Mathematical Induction. Consider $n=k+1$. If $k+1$ is prime, the claim holds for $n=k+1$. If $k+1$ is not prime, then $k+1=a b$ with $a>1$ and $b>1$. Then $2 \leq a \leq k$ and $2 \leq b \leq k$, so by the induction hypothesis $a=p_{1} p_{2} \cdots p_{r}$ and $b=p_{r+1} p_{r+2} \cdots p_{s}$ where the P_{i} 's are prime. Then $k+1=P_{1} p_{2} \cdots p_{r} p_{r+1} p_{r+2} \cdots p_{s}$ and the claim holds for $n=k+1$. By the Principle of Mathematical Induction the proposition holds for all $n \geq 2$, as claimed.

