Mathematical Reasoning

Chapter 2. Sets

2.10. Mathematical Induction and Recursion—Proofs of Theorems

1 Theorem 2.66. The Principle of Mathematical Induction

2 Example 2.67

3 Theorem 2.69

4 Example 2.70

5 Theorem 2.71

Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction.

Let n_0 be an integer. Suppose P is a property such that

- (a) $P(n_0)$ is true.
- (b) For every integer $k \ge n_0$, the following conditional statement is true:

If P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

The P(n) is true for every integer $n \ge n_0$.

Proof. We give a proof by contradiction. ASSUME P(n) is not true for every integer $n \ge n_0$. That is, assume there is some integer $m \ge n_0$ for which P(m) is false. By hypothesis (a) we have $m = n_0 + t$ for some $t \ge 1$. Let t be the least natural number for which $P(n_0 + t)$ is false; such a t exists by the Well-Ordering Principle on the natural numbers.

Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction. Let n_0 be an integer. Suppose P is a property such that

- (a) $P(n_0)$ is true.
- (b) For every integer $k \ge n_0$, the following conditional statement is true:

If P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

The P(n) is true for every integer $n \ge n_0$.

Proof. We give a proof by contradiction. ASSUME P(n) is not true for every integer $n \ge n_0$. That is, assume there is some integer $m \ge n_0$ for which P(m) is false. By hypothesis (a) we have $m = n_0 + t$ for some $t \ge 1$. Let t be the least natural number for which $P(n_0 + t)$ is false; such a t exists by the Well-Ordering Principle on the natural numbers.

Theorem 2.66. The Principle of Mathematical Induction (continued)

Theorem 2.66. The Principle of Mathematical Induction.

Let n_0 be an integer. Suppose P is a property such that

- (a) $P(n_0)$ is true.
- (b) For every integer $k \ge n_0$, the following conditional statement is true:

If P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

The P(n) is true for every integer $n \ge n_0$.

Proof (continued). Then every integer *n* where $n_0 \le n \le n_0 + (t-1)$ has property *P*. But then hypothesis (b) implies that the statement $P((n_0 + (t-1)) + 1) = P(n_0 + t)$ is true, CONTRADICTING the assumption above. So the assumption that P(n) is not true for every integer $n \ge n_0$ is false, and hence P(n) is true for every integer $n \ge n_0$, as claimed.

Example 2.67. For every
$$n \in \mathbb{N}$$
, $1 + 2 + \dots + (n - 1) + n = \frac{n(n + 1)}{2}$.

Proof. First, we establish the basis step: P(1) = 1 = (1+1)/2.

Example 2.67. For every $n \in \mathbb{N}$, $1 + 2 + \cdots + (n - 1) + n = \frac{n(n + 1)}{2}$.

Proof. First, we establish the basis step: P(1) = 1 = (1 + 1)/2. For the induction step, we have

$$1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$$

= $\frac{k(k+1)}{2} + (k+1)$ by the induction
hypothesis $P(k)$
= $\frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k(k+1) + 2(k+1)}{2}$
= $\frac{(k+1)(k+2)}{2}$.

Therefore, P(k + 1) is true and by the Principle of Mathematical Induction, the equality holds for all $n \in \mathbb{N}$.

(

Example 2.67. For every $n \in \mathbb{N}$, $1 + 2 + \cdots + (n - 1) + n = \frac{n(n + 1)}{2}$.

Proof. First, we establish the basis step: P(1) = 1 = (1+1)/2. For the induction step, we have

$$1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$$

= $\frac{k(k+1)}{2} + (k+1)$ by the induction
hypothesis $P(k)$
= $\frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{k(k+1) + 2(k+1)}{2}$
= $\frac{(k+1)(k+2)}{2}$.

Therefore, P(k + 1) is true and by the Principle of Mathematical Induction, the equality holds for all $n \in \mathbb{N}$.

(

Theorem 2.69. If S is a set with n elements then the power set P(S) has 2^n elements.

Proof. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $P(\emptyset) = \{\emptyset\}$ so that the power set of \emptyset has $2^{n_0} = 2^0 = 1$ elements.

Theorem 2.69. If S is a set with n elements then the power set P(S) has 2^n elements.

Proof. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $P(\emptyset) = \{\emptyset\}$ so that the power set of \emptyset has $2^{n_0} = 2^0 = 1$ elements. The induction hypothesis is that a set with k elements has a power set with 2^k elements. Let S be a set with k+1elements. Fix an element $s_0 \in S$. Then $S = \{s_0\} \cup T$ where T has k elements. With each subset $A \subset T$ we associate two subsets of S, namely A and $A \cup \{s_0\}$, and every subset of S is of this form. So S has twice as many subsets as T. By the induction hypothesis, we then have that set Shas $2 \times 2^k = 2^{k+1}$ subsets. So the proposition holds for k+1, and by the Principle of Mathematical Induction the proposition holds for all n > 0.

Theorem 2.69. If S is a set with n elements then the power set P(S) has 2^n elements.

Proof. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $P(\emptyset) = \{\emptyset\}$ so that the power set of \emptyset has $2^{n_0} = 2^0 = 1$ elements. The induction hypothesis is that a set with k elements has a power set with 2^k elements. Let S be a set with k+1elements. Fix an element $s_0 \in S$. Then $S = \{s_0\} \cup T$ where T has k elements. With each subset $A \subseteq T$ we associate two subsets of S, namely A and $A \cup \{s_0\}$, and every subset of S is of this form. So S has twice as many subsets as T. By the induction hypothesis, we then have that set S has $2 \times 2^k = 2^{k+1}$ subsets. So the proposition holds for k+1, and by the Principle of Mathematical Induction the proposition holds for all n > 0.

Example 2.70. For every integer $n \ge 0$, the number $4^{2n+1} + 3^{n+2}$ is a multiple of 13.

Proof. We take the proposition P(n) as $4^{2n+1} + 3^{n+2}$ is a multiple of 13. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $4^{2(0)+1} + 3^{(0)+2} = 4 = 3^2 = 13$, as needed.

Example 2.70. For every integer $n \ge 0$, the number $4^{2n+1} + 3^{n+2}$ is a multiple of 13.

Proof. We take the proposition P(n) as $4^{2n+1} + 3^{n+2}$ is a multiple of 13. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $4^{2(0)+1} + 3^{(0)+2} = 4 = 3^2 = 13$, as needed. The induction hypothesis is that $4^{2k+1} + 3^{k+2} = 13t$ for some integer *t*. Then for n = k + 1, we have:

$$4^{2(k+1)+1} + 3^{(k+1)+2} = 4^{(2k+1)+2} + 3^{(k+2)+1}$$

= $4^{2}(4^{2k+1}) + 4^{2}\underbrace{(3^{k+2} - 3^{k+2})}_{0} + 3(3^{k+2})$
= $4^{2}(4^{2k+1} + 3^{k+2}) + 3^{k+2}(-4^{2} + 3)$
= $16(13t) + 3^{k+2}(-13)$ by the induction
hypothesis
= $13(16t - 3^{k+2}).$

Example 2.70. For every integer $n \ge 0$, the number $4^{2n+1} + 3^{n+2}$ is a multiple of 13.

Proof. We take the proposition P(n) as $4^{2n+1} + 3^{n+2}$ is a multiple of 13. We use the Principle of Mathematical Induction with $n_0 = 0$. For the basis step, we have $4^{2(0)+1} + 3^{(0)+2} = 4 = 3^2 = 13$, as needed. The induction hypothesis is that $4^{2k+1} + 3^{k+2} = 13t$ for some integer *t*. Then for n = k + 1, we have:

$$4^{2(k+1)+1} + 3^{(k+1)+2} = 4^{(2k+1)+2} + 3^{(k+2)+1}$$

= $4^{2}(4^{2k+1}) + 4^{2}\underbrace{(3^{k+2}-3^{k+2})}_{0} + 3(3^{k+2})$
= $4^{2}(4^{2k+1}+3^{k+2}) + 3^{k+2}(-4^{2}+3)$
= $16(13t) + 3^{k+2}(-13)$ by the induction
hypothesis
= $13(16t - 3^{k+2}).$

Example 2.70 (continued)

- **Example 2.70.** For every integer $n \ge 0$, the number $4^{2n+1} + 3^{n+2}$ is a multiple of 13.
- **Proof (continued).** So $4^{2n+1} + 3^{n+2}$ is a multiple of 13 when n = k + 1, and the claim holds for n = k + 1. By the Principle of Mathematical Induction the proposition holds for all $n \ge 0$, as claimed.

Theorem 2.71. Every integer $n \ge 2$ is a product of primes numbers.

Proof. We take the proposition P(n) as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_0 = 2$. For the basis step, we have that n = 2, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \le t \le k$; here we use the *Strong* Principle of Mathematical Induction.

Theorem 2.71. Every integer $n \ge 2$ is a product of primes numbers.

Proof. We take the proposition P(n) as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_0 = 2$. For the basis step, we have that n = 2, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \le t \le k$; here we use the Strong Principle of Mathematical Induction. Consider n = k + 1. If k + 1 is prime, the claim holds for n = k + 1. If k + 1 is not prime, then k+1 = ab with a > 1 and b > 1. Then 2 < a < k and 2 < b < k, so by the induction hypothesis $a = p_1 p_2 \cdots p_r$ and $b = p_{r+1} p_{r+2} \cdots p_s$ where the P_i 's are prime. Then $k + 1 = P_1 p_2 \cdots p_r p_{r+1} p_{r+2} \cdots p_s$ and the claim holds for n = k + 1. By the Principle of Mathematical Induction the proposition holds for all n > 2, as claimed.

Theorem 2.71. Every integer $n \ge 2$ is a product of primes numbers.

Proof. We take the proposition P(n) as "integer n is a product of prime numbers." We use the Principle of Mathematical Induction with $n_0 = 2$. For the basis step, we have that n = 2, as a prime, is a product of prime numbers, as needed. The induction hypothesis is that t is a product of prime numbers for every t satisfying $2 \le t \le k$; here we use the Strong Principle of Mathematical Induction. Consider n = k + 1. If k + 1 is prime, the claim holds for n = k + 1. If k + 1 is not prime, then k+1 = ab with a > 1 and b > 1. Then 2 < a < k and 2 < b < k, so by the induction hypothesis $a = p_1 p_2 \cdots p_r$ and $b = p_{r+1} p_{r+2} \cdots p_s$ where the P_i 's are prime. Then $k + 1 = P_1 p_2 \cdots p_r p_{r+1} p_{r+2} \cdots p_s$ and the claim holds for n = k + 1. By the Principle of Mathematical Induction the proposition holds for all n > 2, as claimed.