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Theorem 2.66. The Principle of Mathematical Induction.
Let n0 be an integer. Suppose P is a property such that

(a) P(n0) is true.

(b) For every integer k ≥ n0, the following conditional statement
is true:

If P(n) is true for every n satisfying n0 ≤ n ≤ k, then
P(k + 1) is true.

The P(n) is true for every integer n ≥ n0.

Proof. We give a proof by contradiction. ASSUME P(n) is not true for
every integer n ≥ n0. That is, assume there is some integer m ≥ n0 for
which P(m) is false. By hypothesis (a) we have m = n0 + t for some
t ≥ 1. Let t be the least natural number for which P(n0 + t) is false; such
a t exists by the Well-Ordering Principle on the natural numbers.
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Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction
(continued)

Theorem 2.66. The Principle of Mathematical Induction.
Let n0 be an integer. Suppose P is a property such that

(a) P(n0) is true.

(b) For every integer k ≥ n0, the following conditional statement
is true:

If P(n) is true for every n satisfying n0 ≤ n ≤ k, then
P(k + 1) is true.

The P(n) is true for every integer n ≥ n0.

Proof (continued). Then every integer n where n0 ≤ n ≤ n0 + (t − 1)
has property P. But then hypothesis (b) implies that the statement
P((n0 + (t − 1)) + 1) = P(n0 + t) is true, CONTRADICTING the
assumption above. So the assumption that P(n) is not true for every
integer n ≥ n0 is false, and hence P(n) is true for every integer n ≥ n0, as
claimed.
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Example 2.67

Example 2.67. For every n ∈ N, 1 + 2 + · · ·+ (n − 1) + n =
n(n + 1)

2
.

Proof. First, we establish the basis step: P(1) = 1 = (1 + 1)/2.

For the
induction step, we have

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1) by the induction

hypothesis P(k)

=
k(k + 1)

2
+

2(k + 1)

2
=

k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

Therefore, P(k + 1) is true and by the Principle of Mathematical
Induction, the equality holds for all n ∈ N.
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Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2n elements.

Proof. We use the Principle of Mathematical Induction with n0 = 0. For
the basis step, we have P(∅) = {∅} so that the power set of ∅ has
2n0 = 20 = 1 elements.

The induction hypothesis is that a set with k
elements has a power set with 2k elements. Let S be a set with k + 1
elements. Fix an element s0 ∈ S . Then S = {s0} ∪ T where T has k
elements. With each subset A ⊆ T we associate two subsets of S , namely
A and A ∪ {s0}, and every subset of S is of this form. So S has twice as
many subsets as T . By the induction hypothesis, we then have that set S
has 2× 2k = 2k+1 subsets. So the proposition holds for k + 1, and by the
Principle of Mathematical Induction the proposition holds for all
n ≥ 0.

() Mathematical Reasoning January 8, 2022 6 / 9



Theorem 2.69

Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2n elements.

Proof. We use the Principle of Mathematical Induction with n0 = 0. For
the basis step, we have P(∅) = {∅} so that the power set of ∅ has
2n0 = 20 = 1 elements. The induction hypothesis is that a set with k
elements has a power set with 2k elements. Let S be a set with k + 1
elements. Fix an element s0 ∈ S . Then S = {s0} ∪ T where T has k
elements. With each subset A ⊆ T we associate two subsets of S , namely
A and A ∪ {s0}, and every subset of S is of this form. So S has twice as
many subsets as T . By the induction hypothesis, we then have that set S
has 2× 2k = 2k+1 subsets. So the proposition holds for k + 1, and by the
Principle of Mathematical Induction the proposition holds for all
n ≥ 0.

() Mathematical Reasoning January 8, 2022 6 / 9



Theorem 2.69

Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2n elements.

Proof. We use the Principle of Mathematical Induction with n0 = 0. For
the basis step, we have P(∅) = {∅} so that the power set of ∅ has
2n0 = 20 = 1 elements. The induction hypothesis is that a set with k
elements has a power set with 2k elements. Let S be a set with k + 1
elements. Fix an element s0 ∈ S . Then S = {s0} ∪ T where T has k
elements. With each subset A ⊆ T we associate two subsets of S , namely
A and A ∪ {s0}, and every subset of S is of this form. So S has twice as
many subsets as T . By the induction hypothesis, we then have that set S
has 2× 2k = 2k+1 subsets. So the proposition holds for k + 1, and by the
Principle of Mathematical Induction the proposition holds for all
n ≥ 0.

() Mathematical Reasoning January 8, 2022 6 / 9



Example 2.70

Example 2.70

Example 2.70. For every integer n ≥ 0, the number 42n+1 + 3n+2 is a
multiple of 13.

Proof. We take the proposition P(n) as 42n+1 + 3n+2 is a multiple of 13.
We use the Principle of Mathematical Induction with n0 = 0. For the basis
step, we have 42(0)+1 + 3(0)+2 = 4 = 32 = 13, as needed.

The induction
hypothesis is that 42k+1 + 3k+2 = 13t for some integer t. Then for
n = k + 1, we have:

42(k+1)+1 + 3(k+1)+2 = 4(2k+1)+2 + 3(k+2)+1

= 42(42k+1) + 42 (3k+2 − 3k+2)︸ ︷︷ ︸
0

+3(3k+2)

= 42(42k+1 + 3k+2) + 3k+2(−42 + 3)

= 16(13t) + 3k+2(−13) by the induction

hypothesis

= 13(16t − 3k+2).
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Example 2.70 (continued)

Example 2.70. For every integer n ≥ 0, the number 42n+1 + 3n+2 is a
multiple of 13.

Proof (continued). So 42n+1 + 3n+2 is a multiple of 13 when n = k + 1,
and the claim holds for n = k + 1. By the Principle of Mathematical
Induction the proposition holds for all n ≥ 0, as claimed.
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Theorem 2.71. Every integer n ≥ 2 is a product of primes numbers.

Proof. We take the proposition P(n) as “integer n is a product of prime
numbers.” We use the Principle of Mathematical Induction with n0 = 2.
For the basis step, we have that n = 2, as a prime, is a product of prime
numbers, as needed. The induction hypothesis is that t is a product of
prime numbers for every t satisfying 2 ≤ t ≤ k; here we use the Strong
Principle of Mathematical Induction.

Consider n = k + 1. If k + 1 is
prime, the claim holds for n = k + 1. If k + 1 is not prime, then
k + 1 = ab with a > 1 and b > 1. Then 2 ≤ a ≤ k and 2 ≤ b ≤ k, so by
the induction hypothesis a = p1p2 · · · pr and b = pr+1pr+2 · · · ps where the
Pi ’s are prime. Then k + 1 = P1p2 · · · prpr+1pr+2 · · · ps and the claim
holds for n = k + 1. By the Principle of Mathematical Induction the
proposition holds for all n ≥ 2, as claimed.
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