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Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction.
Let ng be an integer. Suppose P is a property such that

(a) P(no) is true.

(b) For every integer k > ng, the following conditional statement
is true:

If P(n) is true for every n satisfying ny < n < k, then
P(k 4 1) is true.

The P(n) is true for every integer n > ng.
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Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction.
Let ng be an integer. Suppose P is a property such that
(a) P(no) is true.
(b) For every integer k > ng, the following conditional statement
IS true:

If P(n) is true for every n satisfying ny < n < k, then
P(k 4 1) is true.

The P(n) is true for every integer n > ng.

Proof. We give a proof by contradiction. ASSUME P(n) is not true for
every integer n > ng. That is, assume there is some integer m > ng for
which P(m) is false. By hypothesis (a) we have m = ng + t for some

t > 1. Let t be the least natural number for which P(ng + t) is false; such
a t exists by the Well-Ordering Principle on the natural numbers.

Mathematical Reasoning January 8, 2022 3/9



Theorem 2.66. The Principle of Mathematical Induction

Theorem 2.66. The Principle of Mathematical Induction
(continued)

Theorem 2.66. The Principle of Mathematical Induction.
Let ng be an integer. Suppose P is a property such that

(a) P(ng) is true.

(b) For every integer k > ng, the following conditional statement

is true:
If P(n) is true for every n satisfying nop < n < k, then
P(k 4 1) is true.

The P(n) is true for every integer n > ny.

Proof (continued). Then every integer n where ng < n < ng+ (t — 1)
has property P. But then hypothesis (b) implies that the statement
P((no+ (t — 1))+ 1) = P(ng + t) is true, CONTRADICTING the
assumption above. So the assumption that P(n) is not true for every
integer n > ng is false, and hence P(n) is true for every integer n > ng, as

claimed. ]
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Example 2.67

n(n+1).

Example 2.67. Forevery ne N, 14+2+4---+(n—1)+n= 5
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Example 2.67

1
Example 2.67. For every n € N, 1+2+...+(n,1)+nzm.

Proof. First, we establish the basis step: P(1) =1 = (1+1)/2.
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Example 2.67

n(n+1)
—

Proof. First, we establish the basis step: P(1) =1 = (1+ 1)/2. For the
induction step, we have

Example 2.67. Forevery ne N, 14+2+4---+(n—1)+n=

14244+ (k+1) = (1+24--+k)+(k+1)
k(k+1
= (;) + (k + 1) by the induction

hypothesis P(k)
K(k+1) | 2(k+1) _ k(k+1) +2(k+1)

2 2 2
(k+1)(k +2)

> .

Therefore, P(k + 1) is true and by the Principle of Mathematical
Induction, the equality holds for all n € N. ]
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Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2" elements.
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Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2" elements.

Proof. We use the Principle of Mathematical Induction with ng = 0. For
the basis step, we have P(&) = {&} so that the power set of & has
2Mm =20 — 1 elements.
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Theorem 2.69

Theorem 2.69. If S is a set with n elements then the power set P(S) has
2" elements.

Proof. We use the Principle of Mathematical Induction with ng = 0. For
the basis step, we have P(&) = {&} so that the power set of & has

2M = 20 — 1 elements. The induction hypothesis is that a set with k
elements has a power set with 2% elements. Let S be a set with k + 1
elements. Fix an element sp € S. Then S = {sp} U T where T has k
elements. With each subset A C T we associate two subsets of S, namely
A and AU {sp}, and every subset of S is of this form. So S has twice as
many subsets as T. By the induction hypothesis, we then have that set S
has 2 x 2k = 2k+1 subsets. So the proposition holds for k + 1, and by the
Principle of Mathematical Induction the proposition holds for all

n>0. O
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Example 2.70

Example 2.70. For every integer n > 0, the number 42"+1 432 s 3
multiple of 13.
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Example 2.70

Example 2.70

Example 2.70. For every integer n > 0, the number 42"+1 432 s 3
multiple of 13.

Proof. We take the proposition P(n) as 42"+ 4 37+2 is a multiple of 13.

We use the Principle of Mathematical Induction with ng = 0. For the basis
step, we have 4200041 4 3(0+2 — 4 — 32 = 13, as needed.
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Example 2.70

Example 2.70

Example 2.70. For every integer n > 0, the number 42"+1 432 s 3
multiple of 13.

Proof. We take the proposition P(n) as 42"+ 4 37+2 is a multiple of 13.
We use the Principle of Mathematical Induction with ng = 0. For the basis
step, we have 4200041 4 3(0+2 — 4 — 32 = 13, as needed. The induction
hypothesis is that 4241 4 3k+2 — 13t for some integer t. Then for
n=k+1, we have:
420141y (k4142 g(2k+1)42 4 g(k+2)+1
— 42(42k+1) + 42 (3k+2 _ 3k+2) +3(3k+2)
——
0
= 16(13t) 4 3K2(—13) by the induction
hypothesis
— 13(16t — 3°12).
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Example 2.70 (continued)

Example 2.70. For every integer n > 0, the number 42"+1 432 s 3
multiple of 13.

Proof (continued). So 42" 4 372 is 3 multiple of 13 when n = k + 1,
and the claim holds for n = k 4+ 1. By the Principle of Mathematical
Induction the proposition holds for all n > 0, as claimed. O
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Theorem 2.71

Theorem 2.71. Every integer n > 2 is a product of primes numbers.
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Theorem 2.71

Theorem 2.71. Every integer n > 2 is a product of primes numbers.

Proof. We take the proposition P(n) as “integer n is a product of prime
numbers.” We use the Principle of Mathematical Induction with ng = 2.
For the basis step, we have that n = 2, as a prime, is a product of prime
numbers, as needed. The induction hypothesis is that t is a product of
prime numbers for every t satisfying 2 < t < k; here we use the Strong
Principle of Mathematical Induction.
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Theorem 2.71

Theorem 2.71. Every integer n > 2 is a product of primes numbers.

Proof. We take the proposition P(n) as “integer n is a product of prime
numbers.” We use the Principle of Mathematical Induction with ng = 2.
For the basis step, we have that n = 2, as a prime, is a product of prime
numbers, as needed. The induction hypothesis is that t is a product of
prime numbers for every t satisfying 2 < t < k; here we use the Strong
Principle of Mathematical Induction. Consider n=k 4+ 1. If k+ 1 is
prime, the claim holds for n = k + 1. If k4 1 is not prime, then
k+1=abwitha>1land b>1 Then2<a<kand2<b <k, so by
the induction hypothesis a = p1pr--- p, and b = p,11pr42 - - - ps where the
Pi's are prime. Then k+1 = Pipy--- prpr+1Pr+2 - - - Ps and the claim
holds for n = k 4+ 1. By the Principle of Mathematical Induction the
proposition holds for all n > 2, as claimed. O
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