Mathematical Reasoning

Chapter 2. Sets 2.4. Set Inclusion—Proofs of Theorems

Theorem 2.14

Theorem 2.14. Let A be a set. Then $A \subseteq A$ and $\emptyset \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

Theorem 2.14. Let A be a set. Then $A \subseteq A$ and $\emptyset \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

So show $\emptyset \subseteq A$ we must, by Definition 2.12, show that $x \in \emptyset \Rightarrow x \in A$. Since \emptyset is the empty set, then " $x \in \emptyset$ " is false for any x, so the implication is true (in the proof of Theorem 2.5 in Section 2.1, we said that such an argument shows that the claim holds *vacuously*). That is, $\emptyset \subseteq A$, as claimed. **Theorem 2.14.** Let A be a set. Then $A \subseteq A$ and $\emptyset \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

So show $\emptyset \subseteq A$ we must, by Definition 2.12, show that $x \in \emptyset \Rightarrow x \in A$. Since \emptyset is the empty set, then " $x \in \emptyset$ " is false for any x, so the implication is true (in the proof of Theorem 2.5 in Section 2.1, we said that such an argument shows that the claim holds *vacuously*). That is, $\emptyset \subseteq A$, as claimed.

Theorem 2.15

Theorem 2.15. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. By Definition 2.12, to show $A \subseteq C$ we need to show that $x \in A \Rightarrow x \in C$.

Let $x \in A$. Then since $A \subseteq B$, by Definition 2.12, we have $x \in B$.

Since $B \subset C$, by Definition 2.12, we also have $x \in C$.

Therefore, $A \subseteq C$, as claimed.

Theorem 2.15. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. By Definition 2.12, to show $A \subseteq C$ we need to show that $x \in A \Rightarrow x \in C$.

Let $x \in A$. Then since $A \subseteq B$, by Definition 2.12, we have $x \in B$.

Mathematical Reasoning

Since $B \subset C$, by Definition 2.12, we also have $x \in C$.

Therefore, $A \subseteq C$, as claimed.

4 / 6

Theorem 2.17

Theorem 2.17. $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that A = B. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Theorem 2.17. $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that A = B. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition 2.12 $B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have A = B, as claimed.

Theorem 2.17. $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that A = B. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition 2.12 $B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have A = B, as claimed.

Therefore the two way implication, $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$, holds as claimed.

Theorem 2.17. $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that A = B. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition 2.12 $B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have A = B, as claimed.

Therefore the two way implication, $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$, holds as claimed.

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let *C* be an arbitrary subset of set *A*: $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets A, B, C here to match with the roles played by sets A, B, C in Theorem 2.15). Since *C* is an arbitrary subset of set *A*, then every subseteq of *A* is a subset of *B*. That is, $A \subseteq B$ implies that every subset of *A* is a subset of *B*, as claimed.

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let *C* be an arbitrary subset of set *A*: $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets *A*, *B*, *C* here to match with the roles played by sets *A*, *B*, *C* in Theorem 2.15). Since *C* is an arbitrary subset of set *A*, then every subseteq of *A* is a subset of *B*. That is, $A \subseteq B$ implies that every subset of *A* is a subset of *B*, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hypothesis $A \subseteq B$, as claimed.

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let *C* be an arbitrary subset of set *A*: $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets *A*, *B*, *C* here to match with the roles played by sets *A*, *B*, *C* in Theorem 2.15). Since *C* is an arbitrary subset of set *A*, then every subset of *A* is a subset of *B*. That is, $A \subseteq B$ implies that every subset of *A* is a subset of *B*, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hypothesis $A \subseteq B$, as claimed.

Therefore the two way implication, $A \subseteq B$ if and only if every subset of A is a subset of B, holds as claimed.

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let *C* be an arbitrary subset of set *A*: $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets *A*, *B*, *C* here to match with the roles played by sets *A*, *B*, *C* in Theorem 2.15). Since *C* is an arbitrary subset of set *A*, then every subset of *A* is a subset of *B*. That is, $A \subseteq B$ implies that every subset of *A* is a subset of *B*, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hypothesis $A \subseteq B$, as claimed.

Therefore the two way implication, $A \subseteq B$ if and only if every subset of A is a subset of B, holds as claimed.