Mathematical Reasoning

Chapter 2. Sets

2.4. Set Inclusion—Proofs of Theorems

Introduction to Mathematical
Structures and Proofs
Second Edition

Table of contents

(1) Theorem 2.14
(2) Theorem 2.15
(3) Theorem 2.17
(4) Exercise 2.4.8

Theorem 2.14

Theorem 2.14. Let A be a set. Then $A \subseteq A$ and $\varnothing \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

Theorem 2.14

Theorem 2.14. Let A be a set. Then $A \subseteq A$ and $\varnothing \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

So show $\varnothing \subseteq A$ we must, by Definition 2.12, show that $x \in \varnothing \Rightarrow x \in A$. Since \varnothing is the empty set, then " $x \in \varnothing$ " is false for any x, so the implication is true (in the proof of Theorem 2.5 in Section 2.1, we said that such an argument shows that the claim holds vacuously). That is, $\varnothing \subseteq A$, as claimed.

Theorem 2.14

Theorem 2.14. Let A be a set. Then $A \subseteq A$ and $\varnothing \subseteq A$.

Proof. To show $A \subseteq A$ we must, by Definition 2.12, show that $x \in A \Rightarrow x \in A$, which is certainly true. Hence $A \subseteq A$, as claimed.

So show $\varnothing \subseteq A$ we must, by Definition 2.12, show that $x \in \varnothing \Rightarrow x \in A$. Since \varnothing is the empty set, then " $x \in \varnothing$ " is false for any x, so the implication is true (in the proof of Theorem 2.5 in Section 2.1, we said that such an argument shows that the claim holds vacuously). That is, $\varnothing \subseteq A$, as claimed.

Theorem 2.15

Theorem 2.15. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. By Definition 2.12, to show $A \subseteq C$ we need to show that $x \in A \Rightarrow x \in C$.

Let $x \in A$. Then since $A \subseteq B$, by Definition 2.12, we have $x \in B$.
Since $B \subset C$, by Definition 2.12, we also have $x \in C$.
Therefore, $A \subseteq C$, as claimed.

Theorem 2.15

Theorem 2.15. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. By Definition 2.12, to show $A \subseteq C$ we need to show that $x \in A \Rightarrow x \in C$.

Let $x \in A$. Then since $A \subseteq B$, by Definition 2.12, we have $x \in B$.
Since $B \subset C$, by Definition 2.12, we also have $x \in C$.
Therefore, $A \subseteq C$, as claimed.

Theorem 2.17

Theorem 2.17. $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that $A=B$. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Theorem 2.17

Theorem 2.17. $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that $A=B$. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition 2.12 $B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have $A=B$, as claimed.

Theorem 2.17

Theorem 2.17. $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that $A=B$. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition $2.12 B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have $A=B$, as claimed.

Therefore the two way implication, $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$, holds as claimed.

Theorem 2.17

Theorem 2.17. $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Proof. First, suppose that $A=B$. Then by Definition 2.1, this means $x \in A \Leftrightarrow x \in B$. So $x \in A \Rightarrow x \in B$ and, by Definition 2.12, $A \subseteq B$. Similarly, $x \in B \Rightarrow x \in A$ and, by Definition 2.12, $B \subseteq A$, as claimed.

Second, suppose $A \subseteq B$ and $B \subseteq A$. Now by Definition 2.12, $A \subseteq B$ means that $x \in A \Rightarrow x \in B$. Similarly, by Definition $2.12 B \subseteq A$ means that $x \in B \Rightarrow x \in A$. So in this case we have $x \in A \Leftrightarrow x \in B$, and by Definition 2.1 we have $A=B$, as claimed.

Therefore the two way implication, $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$, holds as claimed.

Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let C be an arbitrary subset of set A : $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets A, B, C here to match with the roles played by sets A, B, C in Theorem 2.15). Since C is an arbitrary subset of set A, then every subseteq of A is a subset of B. That is, $A \subseteq B$ implies that every subset of A is a subset of B, as claimed.

Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let C be an arbitrary subset of set A : $C \subseteq A$. Then by Theorem 2.15, $C \subseteq B$ (this requires permuting the sets A, B, C here to match with the roles played by sets A, B, C in Theorem 2.15). Since C is an arbitrary subset of set A, then every subseteq of A is a subset of B. That is, $A \subseteq B$ implies that every subset of A is a subset of B, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hyopthesis $A \subseteq B$, as claimed.

Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let C be an arbitrary subset of set A : $C \subseteq A$. Then by Theorem $2.15, C \subseteq B$ (this requires permuting the sets A, B, C here to match with the roles played by sets A, B, C in Theorem 2.15). Since C is an arbitrary subset of set A, then every subseteq of A is a subset of B. That is, $A \subseteq B$ implies that every subset of A is a subset of B, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hyopthesis $A \subseteq B$, as claimed.

Therefore the two way implication, $A \subseteq B$ if and only if every subset of A is a subset of B, holds as claimed.

Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that $A \subseteq B$ if and only if every subset of A is a subset of B.

Proof. First, suppose $A \subseteq B$. Let C be an arbitrary subset of set A : $C \subseteq A$. Then by Theorem $2.15, C \subseteq B$ (this requires permuting the sets A, B, C here to match with the roles played by sets A, B, C in Theorem 2.15). Since C is an arbitrary subset of set A, then every subseteq of A is a subset of B. That is, $A \subseteq B$ implies that every subset of A is a subset of B, as claimed.

Second, suppose that every subset of A is a subset of B. Now $A \subseteq A$ by Theorem 2.14, so by hyopthesis $A \subseteq B$, as claimed.

Therefore the two way implication, $A \subseteq B$ if and only if every subset of A is a subset of B, holds as claimed.

