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Theorem 2.14

Theorem 2.14. Let A be aset. Then AC A and @ C A.
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Theorem 2.14

Theorem 2.14. Let A be aset. Then AC A and @ C A.

Proof. To show A C A we must, by Definition 2.12, show that
x € A= x € A, which is certainly true. Hence A C A, as claimed.
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Theorem 2.14

Theorem 2.14. Let A be aset. Then AC A and @ C A.

Proof. To show A C A we must, by Definition 2.12, show that
x € A= x € A, which is certainly true. Hence A C A, as claimed.

So show @ C A we must, by Definition 2.12, show that x € @ = x € A.
Since @ is the empty set, then “x € @" is false for any x, so the
implication is true (in the proof of Theorem 2.5 in Section 2.1, we said
that such an argument shows that the claim holds vacuously). That is,

@ C A, as claimed. O
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Theorem 2.15

Theorem 2.15. If AC B and B C C then AC C.
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Theorem 2.15

Theorem 2.15. f AC B and B C C then AC C.

Proof. By Definition 2.12, to show A C C we need to show that
xeA=xeC(C.

Let x € A. Then since A C B, by Definition 2.12, we have x € B.
Since B C C, by Definition 2.12, we also have x € C.

Therefore, A C C, as claimed. ]
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Theorem 2.17

Theorem 2.17. A=B < AC Band BC A.
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Theorem 2.17

Theorem 2.17. A=B < AC Band BC A.

Proof. First, suppose that A= B. Then by Definition 2.1, this means
x €A x€B. Sox e A= x € B and, by Definition 2.12, AC B.
Similarly, x € B = x € A and, by Definition 2.12, B C A, as claimed.
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Theorem 2.17

Theorem 2.17

Theorem 2.17. A=B < AC Band BC A.

Proof. First, suppose that A= B. Then by Definition 2.1, this means
x €A x€B. Sox e A= x € B and, by Definition 2.12, AC B.
Similarly, x € B = x € A and, by Definition 2.12, B C A, as claimed.

Second, suppose A C B and B C A. Now by Definition 2.12, AC B
means that x € A = x € B. Similarly, by Definition 2.12 B C A means
that x € B = x € A. So in this case we have x € A< x € B, and by
Definition 2.1 we have A = B, as claimed.
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Theorem 2.17

Theorem 2.17. A=B < AC Band BC A.

Proof. First, suppose that A= B. Then by Definition 2.1, this means
x €A x€B. Sox e A= x € B and, by Definition 2.12, AC B.
Similarly, x € B = x € A and, by Definition 2.12, B C A, as claimed.

Second, suppose A C B and B C A. Now by Definition 2.12, AC B
means that x € A = x € B. Similarly, by Definition 2.12 B C A means
that x € B = x € A. So in this case we have x € A< x € B, and by
Definition 2.1 we have A = B, as claimed.

Therefore the two way implication, A= B < A C B and B C A, holds as
claimed. []
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Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that A C B if and only if
every subset of A is a subset of B.
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Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that A C B if and only if
every subset of A is a subset of B.

Proof. First, suppose A C B. Let C be an arbitrary subset of set A:

C C A. Then by Theorem 2.15, C C B (this requires permuting the sets
A, B, C here to match with the roles played by sets A, B, C in Theorem
2.15). Since C is an arbitrary subset of set A, then every subseteq of A is
a subset of B. That is, A C B implies that every subset of A is a subset of
B, as claimed.
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Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that A C B if and only if
every subset of A is a subset of B.

Proof. First, suppose A C B. Let C be an arbitrary subset of set A:

C C A. Then by Theorem 2.15, C C B (this requires permuting the sets
A, B, C here to match with the roles played by sets A, B, C in Theorem
2.15). Since C is an arbitrary subset of set A, then every subseteq of A is
a subset of B. That is, A C B implies that every subset of A is a subset of
B, as claimed.

Second, suppose that every subset of A is a subset of B. Now A C A by
Theorem 2.14, so by hyopthesis A C B, as claimed.
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Exercise 2.4.8

Exercise 2.4.8. Let A and B be sets. Prove that A C B if and only if
every subset of A is a subset of B.

Proof. First, suppose A C B. Let C be an arbitrary subset of set A:

C C A. Then by Theorem 2.15, C C B (this requires permuting the sets
A, B, C here to match with the roles played by sets A, B, C in Theorem
2.15). Since C is an arbitrary subset of set A, then every subseteq of A is
a subset of B. That is, A C B implies that every subset of A is a subset of
B, as claimed.

Second, suppose that every subset of A is a subset of B. Now A C A by
Theorem 2.14, so by hyopthesis A C B, as claimed.

Therefore the two way implication, A C B if and only if every subset of A
is a subset of B, holds as claimed. Ol
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