Mathematical Reasoning

Chapter 2. Sets

2.5. Union, Intersection, and Complement-Proofs of Theorems

Introduction to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Theorem 2.16(a)
(2) Theorem 2.16(h)
(3) Theorem 2.27

Theorem 2.16(a)

Theorem 2.16(a). Let A, B, C be sets and let U be the universal set. Prove the associative law: $A \cap(B \cap C)=A \cap(B \cap C)$.

Proof. By Definition 2.1, we need to show

$x \in A \cap(B \cap C) \Leftrightarrow x \in A \cap(B \cap C)$. We show this with a string of equivalences:

$$
\begin{aligned}
x \in A \cap(B \cap C) & \Leftrightarrow a \in A \text { and } x \in(B \cap C) \\
& \Leftrightarrow x \in A \text { and }(s \in B \text { and } x \in C) \\
& \Leftrightarrow(x \in A \text { and } x \in B) \text { and } x \in C \\
& \Leftrightarrow x \in(A \cap B) \cap C .
\end{aligned}
$$

Theorem 2.16(a)

Theorem 2.16(a). Let A, B, C be sets and let U be the universal set. Prove the associative law: $A \cap(B \cap C)=A \cap(B \cap C)$.

Proof. By Definition 2.1, we need to show $x \in A \cap(B \cap C) \Leftrightarrow x \in A \cap(B \cap C)$. We show this with a string of equivalences:

$$
\begin{aligned}
x \in A \cap(B \cap C) & \Leftrightarrow a \in A \text { and } x \in(B \cap C) \\
& \Leftrightarrow x \in A \text { and }(s \in B \text { and } x \in C) \\
& \Leftrightarrow(x \in A \text { and } x \in B) \text { and } x \in C \\
& \Leftrightarrow x \in(A \cap B) \cap C .
\end{aligned}
$$

So the claim holds.

Theorem 2.16(h)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof. We use Theorem 2.17 and show the set equality by showing $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$.

Theorem 2.16(h)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof. We use Theorem 2.17 and show the set equality by showing $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$.

First, let $x \in(A \cap B)^{\prime}$. Then by Definition 2.21, $x \in U$ and $x \notin A \cap B$. So x is not in both A and B. Hence, x is either (1) not in A or (2) not in B; that is, either (1) $x \in A^{\prime}$ or (2) $x \in B^{\prime}$.

Theorem 2.16(h)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof. We use Theorem 2.17 and show the set equality by showing $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$.

First, let $x \in(A \cap B)^{\prime}$. Then by Definition 2.21, $x \in U$ and $x \notin A \cap B$. So x is not in both A and B. Hence, x is either (1) not in A or (2) not in B; that is, either (1) $x \in A^{\prime}$ or (2) $x \in B^{\prime}$. Then, by Definition 2.24,
$x \in A^{\prime} \cap B^{\prime}$. Since x is an arbitrary element of $(A \cap B)^{\prime}$, then
$(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ by Definition 2.12.

Theorem 2.16(h)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof. We use Theorem 2.17 and show the set equality by showing $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ and $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$.

First, let $x \in(A \cap B)^{\prime}$. Then by Definition 2.21, $x \in U$ and $x \notin A \cap B$. So x is not in both A and B. Hence, x is either (1) not in A or (2) not in B; that is, either (1) $x \in A^{\prime}$ or (2) $x \in B^{\prime}$. Then, by Definition 2.24, $x \in A^{\prime} \cap B^{\prime}$. Since x is an arbitrary element of $(A \cap B)^{\prime}$, then $(A \cap B)^{\prime} \subseteq A^{\prime} \cup B^{\prime}$ by Definition 2.12.

Theorem 2.16(h) (continued)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof (continued). Second, let $x \in A^{\prime} \cup B^{\prime}$. Then by Definition 2.24 either $x \in A^{\prime}$ or $x \in B^{\prime}$; that is, either $x \notin A$ or $x \notin B$. Since $A \cap B \subseteq A$ (this follows from the definition of intersection, Definition 2.24), if $x \notin A$ then $x \notin A \cap B$. Similarly, since $A \cap B \subseteq B$, if $x \notin B$ then $x \notin A \cap B$. Now either $x \notin A$ or $x \notin B$ holds, then we have $x \notin A \cap B$; that is, we have $x \in(A \cap B)^{\prime}$. Since x is an arbitrary element of $A^{\prime} \cup B^{\prime}$, then $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$ by Definition 2.12. Therefore $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$, as claimed.

Theorem 2.16(h) (continued)

Theorem 2.16(h). Let A, B, C be sets and let U be the universal set. Prove De Morgan's law $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.

Proof (continued). Second, let $x \in A^{\prime} \cup B^{\prime}$. Then by Definition 2.24 either $x \in A^{\prime}$ or $x \in B^{\prime}$; that is, either $x \notin A$ or $x \notin B$. Since $A \cap B \subseteq A$ (this follows from the definition of intersection, Definition 2.24), if $x \notin A$ then $x \notin A \cap B$. Similarly, since $A \cap B \subseteq B$, if $x \notin B$ then $x \notin A \cap B$. Now either $x \notin A$ or $x \notin B$ holds, then we have $x \notin A \cap B$; that is, we have $x \in(A \cap B)^{\prime}$. Since x is an arbitrary element of $A^{\prime} \cup B^{\prime}$, then $A^{\prime} \cup B^{\prime} \subseteq(A \cap B)^{\prime}$ by Definition 2.12. Therefore $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$, as claimed.

Theorem 2.27

Theorem 2.27. (a) If $X \subseteq Z$ and $Y \subseteq Z$ then $X \cup Y \subseteq Z$. (b) If $Z \subseteq X$ and $Z \subseteq Y$ then $Z \subseteq X \cap Y$.

Proof. (a) Let $w \in X \cup Y$. Then by Definition 2.24, either $w \in X$ or $w \in Y$. If $w \in X$ then $w \in Z$ since $X \subseteq Z$ by hypothesis (by Definition 2.12). If $w \in Y$ then $w \in Z$ since $Y \subseteq Z$ by hypothesis (by Definition 2.12)

Theorem 2.27

Theorem 2.27. (a) If $X \subseteq Z$ and $Y \subseteq Z$ then $X \cup Y \subseteq Z$. (b) If $Z \subseteq X$ and $Z \subseteq Y$ then $Z \subseteq X \cap Y$.

Proof. (a) Let $w \in X \cup Y$. Then by Definition 2.24, either $w \in X$ or $w \in Y$. If $w \in X$ then $w \in Z$ since $X \subseteq Z$ by hypothesis (by Definition 2.12). If $w \in Y$ then $w \in Z$ since $Y \subseteq Z$ by hypothesis (by Definition 2.12). Since either $w \in X$ or $w \in Y$ holds, then we have $w \in Z$. Hence, since w is an arbitrary element of $X \cup Y$ then by Definition 2.1 we have $X \cup Y \subseteq Z$, as claimed.

Theorem 2.27

Theorem 2.27. (a) If $X \subseteq Z$ and $Y \subseteq Z$ then $X \cup Y \subseteq Z$. (b) If $Z \subseteq X$ and $Z \subseteq Y$ then $Z \subseteq X \cap Y$.

Proof. (a) Let $w \in X \cup Y$. Then by Definition 2.24, either $w \in X$ or $w \in Y$. If $w \in X$ then $w \in Z$ since $X \subseteq Z$ by hypothesis (by Definition 2.12). If $w \in Y$ then $w \in Z$ since $Y \subseteq Z$ by hypothesis (by Definition 2.12). Since either $w \in X$ or $w \in Y$ holds, then we have $w \in Z$. Hence, since w is an arbitrary element of $X \cup Y$ then by Definition 2.1 we have $X \cup Y \subseteq Z$, as claimed.
(b) Let $z \in Z$. Since $Z \subseteq X$ by hypothesis, then $z \in X$ by Definition 2.12. Similarly, $Z \subseteq Y$ by hypothesis, so $z \in Y$ by Definition 2.12. Since both $Z \subseteq X$ and $Z \subseteq Y$ hold, then $z \in X$ and $z \in Y$. That is, $z \in X \cap Y$ by Definition 2.24. Since z is an arbitrary element of Z then $Z \subseteq X \cap Y$, as claimed.

Theorem 2.27

Theorem 2.27. (a) If $X \subseteq Z$ and $Y \subseteq Z$ then $X \cup Y \subseteq Z$. (b) If $Z \subseteq X$ and $Z \subseteq Y$ then $Z \subseteq X \cap Y$.

Proof. (a) Let $w \in X \cup Y$. Then by Definition 2.24, either $w \in X$ or $w \in Y$. If $w \in X$ then $w \in Z$ since $X \subseteq Z$ by hypothesis (by Definition 2.12). If $w \in Y$ then $w \in Z$ since $Y \subseteq Z$ by hypothesis (by Definition 2.12). Since either $w \in X$ or $w \in Y$ holds, then we have $w \in Z$. Hence, since w is an arbitrary element of $X \cup Y$ then by Definition 2.1 we have $X \cup Y \subseteq Z$, as claimed.
(b) Let $z \in Z$. Since $Z \subseteq X$ by hypothesis, then $z \in X$ by Definition 2.12. Similarly, $Z \subseteq Y$ by hypothesis, so $z \in Y$ by Definition 2.12. Since both $Z \subseteq X$ and $Z \subseteq Y$ hold, then $z \in X$ and $z \in Y$. That is, $z \in X \cap Y$ by Definition 2.24. Since z is an arbitrary element of Z then $Z \subseteq X \cap Y$, as claimed.

