
Mathematical Reasoning

Chapter 2. Sets

2.6. Indexed Sets.—Proofs of Theorems

Mathematical Reasoning December 29, 2021 1 / 3

Theorem 2.32(a)

Theorem 2.32(a)

Theorem 2.32. Let A be a set, $\{B_i\}_{i\in I}$ be an indexed family of sets, and let U be the universal set. Then:

(a)
$$A - \bigcap_{i \in I} B_i = \bigcup_{i \in I} (A - B_i)$$

Proof. We give a sequence of double implications:

$$x \in A - \bigcap_{i \in I} B_i \iff x \in A \text{ and } x \notin \bigcap_{i \in I} B_i$$

 $\Leftrightarrow x \in A \text{ and } (\exists i \in I)(x \notin B_i) \text{ by Note 2.6.A}$
 $\Leftrightarrow (\exists i \in I)(x \in A \text{ and } x \notin B_i)$
 $\Leftrightarrow (\exists i \in I)(x \in A - B_i)$
 $\Leftrightarrow x \in \bigcup_{i \in I} (A - B_i).$

So the elements of $A - \bigcap_{i \in I}$ are the same as the elements of $\bigcup_{i \in I} (A - B_i)$ and hence the sets are equal, as claimed.

Mathematical Reasoning December 29, 2021 3 / 3