Mathematical Reasoning

Chapter 2. Sets

2.6. Indexed Sets.—Proofs of Theorems

Introduction to Mathematical
Structures and Proofs
Second Edition

Table of contents

(1) Theorem 2.32(a)

Theorem 2.32(a)

Theorem 2.32. Let A be a set, $\left\{B_{i}\right\}_{i \in I}$ be an indexed family of sets, and let U be the universal set. Then:

$$
\text { (a) } A-\cap_{i \in I} B_{i}=\cup_{i \in I}\left(A-B_{i}\right)
$$

Proof. We give a sequence of double implications:

$$
\begin{aligned}
x \in A-\cap_{i \in I} B_{i} & \Leftrightarrow x \in A \text { and } x \notin \cap_{i \in I} B_{i} \\
& \Leftrightarrow x \in A \text { and }(\exists i \in I)\left(x \notin B_{i}\right) \text { by Note 2.6.A } \\
& \Leftrightarrow(\exists i \in I)\left(x \in A \text { and } x \notin B_{i}\right) \\
& \Leftrightarrow(\exists i \in I)\left(x \in A-B_{i}\right) \\
& \Leftrightarrow x \in \cup_{i \in I}\left(A-B_{i}\right) .
\end{aligned}
$$

So the elements of $A-\cap_{i \in I}$ are the same as the elements of $\cup_{i \in I}\left(A-B_{i}\right)$ and hence the sets are equal, as claimed.

Theorem 2.32(a)

Theorem 2.32. Let A be a set, $\left\{B_{i}\right\}_{i \in I}$ be an indexed family of sets, and let U be the universal set. Then:

$$
\text { (a) } A-\cap_{i \in I} B_{i}=\cup_{i \in I}\left(A-B_{i}\right)
$$

Proof. We give a sequence of double implications:

$$
\begin{aligned}
x \in A-\cap_{i \in I} B_{i} & \Leftrightarrow x \in A \text { and } x \notin \cap_{i \in I} B_{i} \\
& \Leftrightarrow x \in A \text { and }(\exists i \in I)\left(x \notin B_{i}\right) \text { by Note 2.6.A } \\
& \Leftrightarrow(\exists i \in I)\left(x \in A \text { and } x \notin B_{i}\right) \\
& \Leftrightarrow(\exists i \in I)\left(x \in A-B_{i}\right) \\
& \Leftrightarrow x \in \cup_{i \in I}\left(A-B_{i}\right) .
\end{aligned}
$$

So the elements of $A-\cap_{i \in I}$ are the same as the elements of $\cup_{i \in I}\left(A-B_{i}\right)$ and hence the sets are equal, as claimed.

