Mathematical Reasoning

Chapter 2. Sets
 2.7. The Power Set—Proofs of Theorems

Undergraduate Texts in Mathematios
 Larry J. Gerstein
 Introduction to Mathematical
 Structures and Proofs

Second Edition

Table of contents

(1) Theorem 2.36
(2) Exercise 2.7.8

Theorem 2.36

Theorem 2.36. Let A and B be sets. Then:
(a) $\{\varnothing, A\} \subseteq P(A)$
(b) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
(c) $P(A) \cup P(B) \subseteq P(A \cup B)$
(d) $P(A) \cap P(B)=P(A \cap B)$

Proof. (a) This follows immediately from Theorem 2.14, which state that $\varnothing \subseteq A$ and $A \subseteq A$.

Theorem 2.36

Theorem 2.36. Let A and B be sets. Then:
(a) $\{\varnothing, A\} \subseteq P(A)$
(b) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
(c) $P(A) \cup P(B) \subseteq P(A \cup B)$
(d) $P(A) \cap P(B)=P(A \cap B)$

Proof. (a) This follows immediately from Theorem 2.14, which state that $\varnothing \subseteq A$ and $A \subseteq A$.
(b) First suppose $A \subseteq B$. Let $X \in P(A)$. Then $X \subseteq A \subseteq B$, so that (for the record, by Theorem 2.15) $X \subseteq B$ and hence $X \in P(B)$. Since X is an arbitrary element of $P(A)$ then we have $P(A) \subseteq P(B)$.

Theorem 2.36

Theorem 2.36. Let A and B be sets. Then:
(a) $\{\varnothing, A\} \subseteq P(A)$
(b) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
(c) $P(A) \cup P(B) \subseteq P(A \cup B)$
(d) $P(A) \cap P(B)=P(A \cap B)$

Proof. (a) This follows immediately from Theorem 2.14, which state that $\varnothing \subseteq A$ and $A \subseteq A$.
(b) First suppose $A \subseteq B$. Let $X \in P(A)$. Then $X \subseteq A \subseteq B$, so that (for the record, by Theorem 2.15) $X \subseteq B$ and hence $X \in P(B)$. Since X is an arbitrary element of $P(A)$ then we have $P(A) \subseteq P(B)$. Second, suppose $P(A) \subseteq P(B)$. Let $x \in A$. Then $\{x\} \subseteq A$ and $\{x\} \in P(A) \subseteq P(B)$, so that $\{x\} \in P(B)$. That is, $\{x\} \subseteq B$ and hence $x \in B$. Since x is an arbitrary element of A, then $A \subseteq B$. Hence $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$, as claimed.

Theorem 2.36

Theorem 2.36. Let A and B be sets. Then:
(a) $\{\varnothing, A\} \subseteq P(A)$
(b) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
(c) $P(A) \cup P(B) \subseteq P(A \cup B)$
(d) $P(A) \cap P(B)=P(A \cap B)$

Proof. (a) This follows immediately from Theorem 2.14, which state that $\varnothing \subseteq A$ and $A \subseteq A$.
(b) First suppose $A \subseteq B$. Let $X \in P(A)$. Then $X \subseteq A \subseteq B$, so that (for the record, by Theorem 2.15) $X \subseteq B$ and hence $X \in P(B)$. Since X is an arbitrary element of $P(A)$ then we have $P(A) \subseteq P(B)$. Second, suppose $P(A) \subseteq P(B)$. Let $x \in A$. Then $\{x\} \subseteq A$ and $\{x\} \in P(A) \subseteq P(B)$, so that $\{x\} \in P(B)$. That is, $\{x\} \subseteq B$ and hence $x \in B$. Since x is an arbitrary element of A, then $A \subseteq B$. Hence $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$, as claimed.

Theorem 2.36 (continued)

Theorem 2.36. Let A and B be sets. Then:
(c) $P(A) \cup P(B) \subseteq P(A \cup B)$
(d) $P(A) \cap P(B)=P(A \cap B)$

Proof (continued). (c) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by (b) we have $P(A) \subseteq P(A \cup B)$ and $P(B) \subseteq P(A \cup B)$. Then by Theorem 2.27(a) $P(A) \cup P(B) \subseteq P(A \cup B)$, as claimed.
(d) Since $A \cap B \subseteq A$, then by (b) we have $P(A) \subseteq P(A \cup B)$. Since $A \cap B \subseteq B$, then by (b) we have $P(B) \subseteq P(A \cup B)$. So Theorem 2.27(b) implies $P(A \cap B) \subseteq P(A) \cap P(B)$.

Theorem 2.36 (continued)

Theorem 2.36. Let A and B be sets. Then:

$$
\begin{aligned}
& \text { (c) } P(A) \cup P(B) \subseteq P(A \cup B) \\
& \text { (d) } P(A) \cap P(B)=P(A \cap B)
\end{aligned}
$$

Proof (continued). (c) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by (b) we have $P(A) \subseteq P(A \cup B)$ and $P(B) \subseteq P(A \cup B)$. Then by Theorem 2.27(a) $P(A) \cup P(B) \subseteq P(A \cup B)$, as claimed.
(d) Since $A \cap B \subseteq A$, then by (b) we have $P(A) \subseteq P(A \cup B)$. Since $A \cap B \subseteq B$, then by (b) we have $P(B) \subseteq P(A \cup B)$. So Theorem 2.27(b) implies $P(A \cap B) \subseteq P(A) \cap P(B)$. Conversely, if $X \in P(A) \cap P(B)$ then $X \subseteq A$ and $X \subseteq B$ so that $X \subseteq A \cap B$. That is, $X \in P(A \cap B)$. Since X is an arbitrary element of $P(A) \cap P(B)$ then we have $P(A) \cap P(B) \subseteq P(A \cap B)$. Hence $P(A) \cap P(B)=P(A \cap B)$, as claimed.

Theorem 2.36 (continued)

Theorem 2.36. Let A and B be sets. Then:

$$
\begin{aligned}
& \text { (c) } P(A) \cup P(B) \subseteq P(A \cup B) \\
& \text { (d) } P(A) \cap P(B)=P(A \cap B)
\end{aligned}
$$

Proof (continued). (c) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by (b) we have $P(A) \subseteq P(A \cup B)$ and $P(B) \subseteq P(A \cup B)$. Then by Theorem 2.27(a) $P(A) \cup P(B) \subseteq P(A \cup B)$, as claimed.
(d) Since $A \cap B \subseteq A$, then by (b) we have $P(A) \subseteq P(A \cup B)$. Since $A \cap B \subseteq B$, then by (b) we have $P(B) \subseteq P(A \cup B)$. So Theorem 2.27(b) implies $P(A \cap B) \subseteq P(A) \cap P(B)$. Conversely, if $X \in P(A) \cap P(B)$ then $X \subseteq A$ and $X \subseteq B$ so that $X \subseteq A \cap B$. That is, $X \in P(A \cap B)$. Since X is an arbitrary element of $P(A) \cap P(B)$ then we have $P(A) \cap P(B) \subseteq P(A \cap B)$. Hence $P(A) \cap P(B)=P(A \cap B)$, as claimed.

Exercise 2.7.8

Exercise 2.7.8. Let A be a set, and suppose $x \notin A$. Describe $P(A \cup\{x\})$.
Solution. Every subset of A is a subset of $A \cup\{x\}$, so
$P(A) \subseteq P(A \cup\{x\})$. Now if $B \in P(A \cup\{x\})$ and B is not a subset of A, then B must include x as an element. For each subset C of A, the set $C \cup\{x\}$ is a subset of $A \cup\{x\}$. So

$$
\{B \mid B \in P(A)\} \cup\{C=B \cup\{x\} \mid B \in P(A)\} \subseteq P(A \cup\{x\}) .
$$

Exercise 2.7.8

Exercise 2.7.8. Let A be a set, and suppose $x \notin A$. Describe $P(A \cup\{x\})$.
Solution. Every subset of A is a subset of $A \cup\{x\}$, so $P(A) \subseteq P(A \cup\{x\})$. Now if $B \in P(A \cup\{x\})$ and B is not a subset of A, then B must include x as an element. For each subset C of A, the set $C \cup\{x\}$ is a subset of $A \cup\{x\}$. So

$$
\{B \mid B \in P(A)\} \cup\{C=B \cup\{x\} \mid B \in P(A)\} \subseteq P(A \cup\{x\})
$$

Since the subsets of $A \cup\{x\}$ either exclude x (and so the sets are in $P(A)$) or include x (and so the sets are of the form $C=B \cup\{x\}$ where $B \in P(A)$). Hence

$$
P(A \cup\{x\})=\{B \mid B \in P(A)\} \cup\{C=B \cup\{x\} \mid B \in P(A)\}
$$

and this classifies the elements of $P(A \cup\{x\})$.

Exercise 2.7.8

Exercise 2.7.8. Let A be a set, and suppose $x \notin A$. Describe $P(A \cup\{x\})$.
Solution. Every subset of A is a subset of $A \cup\{x\}$, so $P(A) \subseteq P(A \cup\{x\})$. Now if $B \in P(A \cup\{x\})$ and B is not a subset of A, then B must include x as an element. For each subset C of A, the set $C \cup\{x\}$ is a subset of $A \cup\{x\}$. So

$$
\{B \mid B \in P(A)\} \cup\{C=B \cup\{x\} \mid B \in P(A)\} \subseteq P(A \cup\{x\})
$$

Since the subsets of $A \cup\{x\}$ either exclude x (and so the sets are in $P(A)$) or include x (and so the sets are of the form $C=B \cup\{x\}$ where $B \in P(A)$). Hence

$$
P(A \cup\{x\})=\{B \mid B \in P(A)\} \cup\{C=B \cup\{x\} \mid B \in P(A)\}
$$

and this classifies the elements of $P(A \cup\{x\})$.

