Mathematical Reasoning

Chapter 2. Sets

2.8. Ordered Pairs and Cartesian Products-Proofs of Theorems

Table of contents

Theorem 2.40. $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d.

Proof. First, suppose a = c and b = d. Then $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$, so that $\{\{c\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. That is, (a, b) = (c, d), as claimed.

Theorem 2.40

Theorem 2.40. $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d. **Proof.** First, suppose a = c and b = d. Then $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$, so that $\{\{c\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. That is, (a, b) = (c, d), as claimed.

Second, suppose (a, b) = (c, d) (this is Exercise 2.8.8). We consider two subcases. If a = b then $\{\{a\}, \{a, b\}\} = \{\{a\}\}$ and the hypothesis (a, b) = (c, d) means that $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$, or that $\{\{a\}\} = \{\{c\}, \{c, d\}\}$. From this we must have that $\{c\} = \{a\}$ and $\{c, d\} = \{a\}$, and hence we have a = c and b = a = d.

Theorem 2.40

Theorem 2.40. $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d. **Proof.** First, suppose a = c and b = d. Then $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$, so that $\{\{c\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. That is, (a, b) = (c, d), as claimed. Second, suppose (a, b) = (c, d) (this is Exercise 2.8.8). We consider two subcases. If a = b then $\{\{a\}, \{a, b\}\} = \{\{a\}\}\$ and the hypothesis (a,b) = (c,d) means that $\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$, or that $\{\{a\}\} = \{\{c\}, \{c, d\}\}$. From this we must have that $\{c\} = \{a\}$ and $\{c, d\} = \{a\}$, and hence we have a = c and b = a = d. If $a \neq b$ then the hypothesis (a, b) = (c, d) means that $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. Now we cannot have $\{a, b\} = \{c\}$ since $\{a, b\}$ has two elements and $\{c\}$ has one element and hence $\{c\}$ cannot have the same elements as $\{a, b\}$; that is, we have $\{a, b\} \neq \{c\}$. So under our hypotheses, we must have $\{a, b\} = \{c, d\}$ and $\{a\} = \{c\}$. The second condition implies a = c and then the first condition implies b = d. In both subcases, we have a = cand b = d, as claimed.

Mathematical Reasoning

Theorem 2.40

Theorem 2.40. $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d. **Proof.** First, suppose a = c and b = d. Then $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$, so that $\{\{c\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. That is, (a, b) = (c, d), as claimed. Second, suppose (a, b) = (c, d) (this is Exercise 2.8.8). We consider two subcases. If a = b then $\{\{a\}, \{a, b\}\} = \{\{a\}\}\$ and the hypothesis (a, b) = (c, d) means that $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$, or that $\{\{a\}\} = \{\{c\}, \{c, d\}\}$. From this we must have that $\{c\} = \{a\}$ and $\{c, d\} = \{a\}$, and hence we have a = c and b = a = d. If $a \neq b$ then the hypothesis (a, b) = (c, d) means that $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$. Now we cannot have $\{a, b\} = \{c\}$ since $\{a, b\}$ has two elements and $\{c\}$ has one element and hence $\{c\}$ cannot have the same elements as $\{a, b\}$; that is, we have $\{a, b\} \neq \{c\}$. So under our hypotheses, we must have $\{a, b\} = \{c, d\}$ and $\{a\} = \{c\}$. The second condition implies a = c and then the first condition implies b = d. In both subcases, we have a = cand b = d, as claimed.

Theorem 2.45 (a, d, e)

Theorem 2.45. Let A, B, and C be sets. Then:

Proof. (a) We have the following equivalences:

$$(x, y) \in (A \cup B) \times C \quad \Leftrightarrow \quad (x \in A \text{ or } x \in B) \text{ and } y \in C$$

$$\Leftrightarrow \quad (x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C)$$

$$\Leftrightarrow \quad (x, y) \in A \times C \text{ or } (x, y \in B \times C)$$

$$\Leftrightarrow \quad (x, y) \in (A \times C) \cup (B \times C).$$

So $(A \cup B) \times C = (A \times C) \cup (B \times C)$, as claimed.

Theorem 2.45 (a, d, e)

Theorem 2.45. Let A, B, and C be sets. Then:

Proof. (a) We have the following equivalences:

$$(x, y) \in (A \cup B) \times C \quad \Leftrightarrow \quad (x \in A \text{ or } x \in B) \text{ and } y \in C$$

$$\Leftrightarrow \quad (x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C)$$

$$\Leftrightarrow \quad (x, y) \in A \times C \text{ or } (x, y \in B \times C)$$

$$\Leftrightarrow \quad (x, y) \in (A \times C) \cup (B \times C).$$

So $(A \cup B) \times C = (A \times C) \cup (B \times C)$, as claimed.

Theorem 2.45 (a, d, e); continued 1

Theorem 2.45. Let A, B, and C be sets. Then: (d) If A and B are nonempty sets then $A \times B = B \times A \Leftrightarrow A = B$. **Proof (continued). (d)** First, suppose A = B. Then:

$$(x,y) \in A \times B \iff x \in A \text{ and } x \in B$$

 $\Leftrightarrow x \in A = B \text{ and } y \in B = A$
 $\Leftrightarrow (x,y) \in B \times A.$

Therefore $A \times B = B \times A$, as claimed.

Conversely, suppose $A \times B = B \times A$. We give an indirect proof (i.e., a proof by contradiction). ASSUME $A \neq B$. Then there is some element in one set that is not in the other; say (without loss of generality) that $A \in A - B$. Let $b \in B$ (which exists since B is nonempty). Then $(a, b) \in A \times B$ and, by hypothesis, $(a, b) \in B \times A$. Hence $a \in B$, CONTRADICTING the assumption that $A \neq B$. Therefore $A \neq B$ is false, and so A = B as claimed.

Theorem 2.45 (a, d, e); continued 1

Theorem 2.45. Let A, B, and C be sets. Then:

(d) If A and B are nonempty sets then $A \times B = B \times A \Leftrightarrow A = B$.

Proof (continued). (d) First, suppose A = B. Then:

$$(x,y) \in A \times B \iff x \in A \text{ and } x \in B$$

 $\Leftrightarrow x \in A = B \text{ and } y \in B = A$
 $\Leftrightarrow (x,y) \in B \times A.$

Therefore $A \times B = B \times A$, as claimed.

Conversely, suppose $A \times B = B \times A$. We give an indirect proof (i.e., a proof by contradiction). ASSUME $A \neq B$. Then there is some element in one set that is not in the other; say (without loss of generality) that $A \in A - B$. Let $b \in B$ (which exists since B is nonempty). Then $(a, b) \in A \times B$ and, by hypothesis, $(a, b) \in B \times A$. Hence $a \in B$, CONTRADICTING the assumption that $A \neq B$. Therefore $A \neq B$ is false, and so A = B as claimed.

Theorem 2.45 (a, d, e); continued 2

Theorem 2.45. Let *A*, *B*, and *C* be sets. Then:

(e) If $A_1 \in P(A)$ and $B_1 \in P(B)$, then $A_1 \times B_1 \in P(A \times B)$.

Proof (continued). (e) First, for $A_1 \in P(A)$ and $B_1 \in P(B)$ (i.e., $A_1 \subseteq A$ and $B_1 \subseteq B$), the claim that $A_1 \times B_1 \in P(A \times B)$ is equivalent to the claim that $A_1 \times B_1 \subseteq A \times B$. So suppose $A_1 \subseteq A$ and $B_1 \subseteq B$. Then:

$$(x, y) \in A_1 imes B_1 \quad \Leftrightarrow \quad x \in A_1 \text{ and } y \in B_1$$

 $\Leftrightarrow \quad x \in A \text{ and } y \in B \text{ since } A_1 \subseteq A \text{ and } B_1 \subseteq B$
 $\Leftrightarrow \quad (x, y) \in B imes A.$

Therefore $A_1 \times B_1 \subseteq A \times B$, which is equivalent to the claim.