Mathematical Reasoning

Chapter 2. Sets
2.9. Set Decomposition: Partitions and Relations-Proofs of Theorems

Introduction to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Lemma 2.58
(2) Theorem 2.59
(3) Theorem 2.62

Lemma 2.58

Lemma 2.58. If \sim is an equivalence relation and $[x] \neq[y]$ then $[x] \cap[y]=\varnothing$.

Proof. Consider the contrapositive and assume that $[x] \cap[y] \neq \varnothing$. First let $s \in[x]$, so that $s \sim x$. Since $[x] \cap[y] \neq \varnothing$, there is an element $z \in[x] \cap[y]$. That is, $z \sim x$ and $z \sim y$, so that (by reflectivity and transitivity) we have $s \sim x \sim z \sim y$. So (also by transitivity) $s \sim y$, and so $s \in[y]$. Since s is an arbitrary element of $[x]$, then we have $[x] \subseteq[y]$.

Lemma 2.58

Lemma 2.58. If \sim is an equivalence relation and $[x] \neq[y]$ then $[x] \cap[y]=\varnothing$.

Proof. Consider the contrapositive and assume that $[x] \cap[y] \neq \varnothing$. First let $s \in[x]$, so that $s \sim x$. Since $[x] \cap[y] \neq \varnothing$, there is an element $z \in[x] \cap[y]$. That is, $z \sim x$ and $z \sim y$, so that (by reflectivity and transitivity) we have $s \sim x \sim z \sim y$. So (also by transitivity) $s \sim y$, and so $s \in[y]$. Since s is an arbitrary element of $[x]$, then we have $[x] \subseteq[y]$.

Second, let $t \in[y]$, so that $t \sim y$. Since $[x] \cap[y] \neq \varnothing$, there is an element $w \in[x] \cap[y]$. That is, $w \sim x$ and $w \sim y$, so that (by reflectivity and transitivity) we have $t \sim y \sim w \sim x$. So (also by transitivity) $t \sim x$, and so $t \in[x]$. Since t is an arbitrary element of $[y]$, then we have $[y] \subseteq[x]$. Therefore, $[x]=[y]$ and we have shown that the contrapositive of the claim holds, and hence the claim holds.

Lemma 2.58

Lemma 2.58. If \sim is an equivalence relation and $[x] \neq[y]$ then $[x] \cap[y]=\varnothing$.

Proof. Consider the contrapositive and assume that $[x] \cap[y] \neq \varnothing$. First let $s \in[x]$, so that $s \sim x$. Since $[x] \cap[y] \neq \varnothing$, there is an element $z \in[x] \cap[y]$. That is, $z \sim x$ and $z \sim y$, so that (by reflectivity and transitivity) we have $s \sim x \sim z \sim y$. So (also by transitivity) $s \sim y$, and so $s \in[y]$. Since s is an arbitrary element of $[x]$, then we have $[x] \subseteq[y]$.

Second, let $t \in[y]$, so that $t \sim y$. Since $[x] \cap[y] \neq \varnothing$, there is an element $w \in[x] \cap[y]$. That is, $w \sim x$ and $w \sim y$, so that (by reflectivity and transitivity) we have $t \sim y \sim w \sim x$. So (also by transitivity) $t \sim x$, and so $t \in[x]$. Since t is an arbitrary element of $[y]$, then we have $[y] \subseteq[x]$. Therefore, $[x]=[y]$ and we have shown that the contrapositive of the claim holds, and hence the claim holds.

Theorem 2.59

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim. Then Π is a partition of S. This partition Π is called the partition induced by \sim.

Proof. First, represent Π as an indexed set: $\Pi=\left\{C_{i}\right\}_{i \in l}$. By Lemma 2.58, we have $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. So to show that Π is a partition, we need to $\cup_{i \in I} C_{i}=S$.

Theorem 2.59

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim. Then Π is a partition of S. This partition Π is called the partition induced by \sim.

Proof. First, represent Π as an indexed set: $\Pi=\left\{C_{i}\right\}_{i \in I}$. By Lemma 2.58, we have $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. So to show that Π is a partition, we need to $\cup_{i \in I} C_{i}=S$. For $x \in \cup_{i \in I} C_{i}$, we have $x \in C_{i^{\prime}}$ for some $i^{\prime} \in I$. Since $C_{i^{\prime}} \subseteq S$, then $x \in S$. Since x is an arbitrary element of $\cup_{i \in I} C_{i}$, then $\cup_{i \in I} C_{i} \subseteq S$.

Theorem 2.59

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim. Then Π is a partition of S. This partition Π is called the partition induced by \sim.

Proof. First, represent Π as an indexed set: $\Pi=\left\{C_{i}\right\}_{i \in I}$. By Lemma 2.58, we have $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. So to show that Π is a partition, we need to $\cup_{i \in I} C_{i}=S$. For $x \in \cup_{i \in I} C_{i}$, we have $x \in C_{i^{\prime}}$ for some $i^{\prime} \in I$. Since $C_{i^{\prime}} \subseteq S$, then $x \in S$. Since x is an arbitrary element of $\cup_{i \in I} C_{i}$, then $\cup_{i \in I} C_{i} \subseteq S$. If $s \in S$, then $s \in C_{i}$ for some $i \in I$; namely $s \in[s]$. So $s \in \cup_{i \in I} C_{i}$ and, since s is an arbitrary element of S, then $S \subseteq \cup_{i \in I} C_{i}$. Therefore, we have $S=\cup_{i \in I} C_{i}$, as needed.

Theorem 2.59

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim. Then Π is a partition of S. This partition Π is called the partition induced by \sim.

Proof. First, represent Π as an indexed set: $\Pi=\left\{C_{i}\right\}_{i \in I}$. By Lemma 2.58, we have $C_{i} \cap C_{j}=\varnothing$ for $i \neq j$. So to show that Π is a partition, we need to $\cup_{i \in I} C_{i}=S$. For $x \in \cup_{i \in I} C_{i}$, we have $x \in C_{i^{\prime}}$ for some $i^{\prime} \in I$. Since $C_{i^{\prime}} \subseteq S$, then $x \in S$. Since x is an arbitrary element of $\cup_{i \in I} C_{i}$, then $\cup_{i \in I} C_{i} \subseteq S$. If $s \in S$, then $s \in C_{i}$ for some $i \in I$; namely $s \in[s]$. So $s \in \cup_{i \in I} C_{i}$ and, since s is an arbitrary element of S, then $S \subseteq \cup_{i \in I} C_{i}$. Therefore, we have $S=\cup_{i \in I} C_{i}$, as needed.

Theorem 2.62

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π. Then \sim is an equivalence relation on S. This is called the equivalence relation induced by partition Π.

Proof. Let $\Pi=\left\{A_{i}\right\}_{i \in I}$. Since Π is a partition, we have (by Definition 2.47) that $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$, and that $\cup_{i \in I} A_{i}=S$.

Theorem 2.62

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π. Then \sim is an equivalence relation on S. This is called the equivalence relation induced by partition Π.

Proof. Let $\Pi=\left\{A_{i}\right\}_{i \in I}$. Since Π is a partition, we have (by Definition 2.47) that $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$, and that $\cup_{i \in I} A_{i}=S$.

If $x \in S$ then $x \in A_{i}$ for some $i \in I$ and so by the definition of \sim we have
$x \sim s$, so that reflexivity holds. For symmetry, suppose $x \sim y$ so that $\{y, x\}=\{x, y\} \subset A_{i}$ for some $i \in I$, and hence $y \sim x$.

Theorem 2.62

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π. Then \sim is an equivalence relation on S. This is called the equivalence relation induced by partition Π.

Proof. Let $\Pi=\left\{A_{i}\right\}_{i \in I}$. Since Π is a partition, we have (by Definition 2.47) that $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$, and that $\cup_{i \in I} A_{i}=S$.

If $x \in S$ then $x \in A_{i}$ for some $i \in I$ and so by the definition of \sim we have $x \sim s$, so that reflexivity holds. For symmetry, suppose $x \sim y$ so that $\{y, x\}=\{x, y\} \subset A_{i}$ for some $i \in I$, and hence $y \sim x$. For transitivity, if $x \sim y$ and $y \sim z$ then $\{x, y\} \subseteq A_{1}$ and $\{y, z\} \subseteq A_{j}$ for some $i, j \in I$. But then $y \in A_{i} \cap A_{j}$, and therefore we must have $i \neq j$ since blocks A_{i} and A_{j} are disjoint for $i \neq j$. Thus $\{x, y, z\} \subseteq A_{i}$ and hence $x \sim z$, so that transitivity holds. Since \sim is reflexive, symmetric, and transitive, then it is an equivalence relation, as claimed.

Theorem 2.62

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π. Then \sim is an equivalence relation on S. This is called the equivalence relation induced by partition Π.

Proof. Let $\Pi=\left\{A_{i}\right\}_{i \in I}$. Since Π is a partition, we have (by Definition 2.47) that $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$, and that $\cup_{i \in I} A_{i}=S$.

If $x \in S$ then $x \in A_{i}$ for some $i \in I$ and so by the definition of \sim we have $x \sim s$, so that reflexivity holds. For symmetry, suppose $x \sim y$ so that $\{y, x\}=\{x, y\} \subset A_{i}$ for some $i \in I$, and hence $y \sim x$. For transitivity, if $x \sim y$ and $y \sim z$ then $\{x, y\} \subseteq A_{1}$ and $\{y, z\} \subseteq A_{j}$ for some $i, j \in I$. But then $y \in A_{i} \cap A_{j}$, and therefore we must have $i \neq j$ since blocks A_{i} and A_{j} are disjoint for $i \neq j$. Thus $\{x, y, z\} \subseteq A_{i}$ and hence $x \sim z$, so that transitivity holds. Since \sim is reflexive, symmetric, and transitive, then it is an equivalence relation, as claimed.

