Mathematical Reasoning

Chapter 3. Functions
3.3. Composition of Functions-Proofs of Theorems

Introduction
to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Theorem 3.23. Associative Law of Function Composition
(2) Theorem 3.24
(3) Theorem 3.27
(4) Theorem 3.29

Theorem 3.23. Associative Law of Function Composition

Theorem 3.23. Associative Law of Function Composition. Given functions $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$, then $h \circ(g \circ f)=(h \circ g) \circ f$.

Proof. Notice that $\operatorname{dom}(h \circ(g \circ f))=\operatorname{dom}((h \circ g) \circ f)=A$. So we need
to show that $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for all $x \in A$. By the definition of function composition, we have for every $x \in A$ that:

$$
\begin{aligned}
(h \circ(g \circ f))(x) & =h((g \circ f)(x))=h(g(f(x))) \\
& =h \circ g)(f(x))=((h \circ g) \circ f)(x),
\end{aligned}
$$

and hence $h \circ(g \circ f)=(h \circ g) \circ f$, as claimed.

Theorem 3.23. Associative Law of Function Composition

Theorem 3.23. Associative Law of Function Composition. Given functions $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$, then $h \circ(g \circ f)=(h \circ g) \circ f$.

Proof. Notice that $\operatorname{dom}(h \circ(g \circ f))=\operatorname{dom}((h \circ g) \circ f)=A$. So we need to show that $(h \circ(g \circ f))(x)=((h \circ g) \circ f)(x)$ for all $x \in A$. By the definition of function composition, we have for every $x \in A$ that:

$$
\begin{aligned}
(h \circ(g \circ f))(x) & =h((g \circ f)(x))=h(g(f(x))) \\
& =h \circ g)(f(x))=((h \circ g) \circ f)(x),
\end{aligned}
$$

and hence $h \circ(g \circ f)=(h \circ g) \circ f$, as claimed.

Theorem 3.24

Theorem 3.24. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) If f and g are injections then $g \circ f: A \rightarrow C$ is an injection.
(b) If f and g are surjections then so is $g \circ f$.
(c) If f and g are bijections then so is $g \circ f$.

Proof. (a) Let $a_{1}, a_{2} \in A$ where $(g \circ f)\left(a_{1}=(g \circ f)\left(a_{2}\right)\right.$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, which implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ since g is injective. Then $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$ since f is injective. Therefore, by definition, we have that $g \circ f$ is injective, as claimed.

Theorem 3.24

Theorem 3.24. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) If f and g are injections then $g \circ f: A \rightarrow C$ is an injection.
(b) If f and g are surjections then so is $g \circ f$.
(c) If f and g are bijections then so is $g \circ f$.

Proof. (a) Let $a_{1}, a_{2} \in A$ where $(g \circ f)\left(a_{1}=(g \circ f)\left(a_{2}\right)\right.$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, which implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ since g is injective. Then $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$ since f is injective. Therefore, by definition, we have that $g \circ f$ is injective, as claimed.
(b) Let $c \in C$. Since g is surjective, there is some $b \in B$ such that $g(b)=c$. Since f is surjective, there is some $a \in A$ such that $f(a)=b$. Hence $(g \circ f)(a)=g(f(a))=g(b)=c$, and $g \circ f$ is surjective, as claimed.

Theorem 3.24

Theorem 3.24. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) If f and g are injections then $g \circ f: A \rightarrow C$ is an injection.
(b) If f and g are surjections then so is $g \circ f$.
(c) If f and g are bijections then so is $g \circ f$.

Proof. (a) Let $a_{1}, a_{2} \in A$ where $(g \circ f)\left(a_{1}=(g \circ f)\left(a_{2}\right)\right.$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, which implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ since g is injective. Then $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$ since f is injective. Therefore, by definition, we have that $g \circ f$ is injective, as claimed.
(b) Let $c \in C$. Since g is surjective, there is some $b \in B$ such that $g(b)=c$. Since f is surjective, there is some $a \in A$ such that $f(a)=b$. Hence $(g \circ f)(a)=g(f(a))=g(b)=c$, and $g \circ f$ is surjective, as claimed.
(c) Parts (a) and (b) combine to give (c).

Theorem 3.24

Theorem 3.24. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
(a) If f and g are injections then $g \circ f: A \rightarrow C$ is an injection.
(b) If f and g are surjections then so is $g \circ f$.
(c) If f and g are bijections then so is $g \circ f$.

Proof. (a) Let $a_{1}, a_{2} \in A$ where $(g \circ f)\left(a_{1}=(g \circ f)\left(a_{2}\right)\right.$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, which implies $f\left(a_{1}\right)=f\left(a_{2}\right)$ since g is injective. Then $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$ since f is injective. Therefore, by definition, we have that $g \circ f$ is injective, as claimed.
(b) Let $c \in C$. Since g is surjective, there is some $b \in B$ such that $g(b)=c$. Since f is surjective, there is some $a \in A$ such that $f(a)=b$. Hence $(g \circ f)(a)=g(f(a))=g(b)=c$, and $g \circ f$ is surjective, as claimed.
(c) Parts (a) and (b) combine to give (c).

Theorem 3.27

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof. To show equivalence, first assume that (a) holds. Let $a \in A$. Denote $b=f(a) \in B$. Then by (a),
$(g \circ f)(a)=\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(b)=a=i_{A}(a)$. Since a is an arbitrary element of A, we have $g \circ f=i_{A}$, as claimed.

Theorem 3.27

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof. To show equivalence, first assume that (a) holds. Let $a \in A$. Denote $b=f(a) \in B$. Then by (a), $(g \circ f)(a)=\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(b)=a=i_{A}(a)$. Since a is an arbitrary element of A, we have $g \circ f=i_{A}$, as claimed. Let $b \in B$ and denote $a=g(b)$ so that $a=f^{-1}(b)$ and $f(a)=b$. Then by (a), $(f \circ g)(b)=\left(f \circ f^{-1}\right)(b)=f\left(f^{-1}(b)\right)=f(a)=b=i_{B}(b)$. Since b is an arbitrary element of B, we have $f \circ g=i_{B}$, as claimed.

Theorem 3.27

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof. To show equivalence, first assume that (a) holds. Let $a \in A$. Denote $b=f(a) \in B$. Then by (a), $(g \circ f)(a)=\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(b)=a=i_{A}(a)$. Since a is an arbitrary element of A, we have $g \circ f=i_{A}$, as claimed. Let $b \in B$ and denote $a=g(b)$ so that $a=f^{-1}(b)$ and $f(a)=b$. Then by (a), $(f \circ g)(b)=\left(f \circ f^{-1}\right)(b)=f\left(f^{-1}(b)\right)=f(a)=b=i_{B}(b)$. Since b is an arbitrary element of B, we have $f \circ g=i_{B}$, as claimed.

Theorem 3.27 (continued 1)

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof (continued). Now suppose that (b) holds. Then for all $a_{1}, a_{2} \in A$ we have that $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow\left(g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right) \Rightarrow a_{1}=a_{2}\right.$ since (b) gives $g \circ f=i_{A}$. Hence f is injective. Also, if $b \in B$ then $g(b) \in A$ and $f(g(b))=(f \circ g)(b)=b$ since $f \circ g=i_{B}$. Hence, f is also surjective and so is a bijection, as needed. Therefore $f-1$ exists (but we still need to show that $g=f^{-1}$).

Theorem 3.27 (continued 1)

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof (continued). Now suppose that (b) holds. Then for all $a_{1}, a_{2} \in A$ we have that $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow\left(g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right) \Rightarrow a_{1}=a_{2}\right.$ since (b) gives $g \circ f=i_{A}$. Hence f is injective. Also, if $b \in B$ then $g(b) \in A$ and $f(g(b))=(f \circ g)(b)=b$ since $f \circ g=i_{B}$. Hence, f is also surjective and so is a bijection, as needed. Therefore $f-1$ exists (but we still need to show that $g=f^{-1}$). The domain of both $g \circ i_{B}$ and g is set B, and for each $b \in B$ we have $\left(g \circ i_{B}\right)(b)=g\left(i_{B}(b)\right)=g(b)$. So $g \circ i_{B}=g$. Also the domain of both $i_{A} \circ f^{-1}$ and f^{-1} is set B, and for each $b \in B$ we have $\left(i_{A} \circ f^{-1}\right)(b)=i_{A}\left(f^{-1}(b)\right)=f^{-1}(b)\left(\right.$ since $\left.f^{-1}(b) \in A\right)$. So $i_{A} \circ f^{-1}=f^{-1}$.

Theorem 3.27 (continued 1)

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof (continued). Now suppose that (b) holds. Then for all $a_{1}, a_{2} \in A$ we have that $f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow\left(g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right) \Rightarrow a_{1}=a_{2}\right.$ since (b) gives $g \circ f=i_{A}$. Hence f is injective. Also, if $b \in B$ then $g(b) \in A$ and $f(g(b))=(f \circ g)(b)=b$ since $f \circ g=i_{B}$. Hence, f is also surjective and so is a bijection, as needed. Therefore $f-1$ exists (but we still need to show that $g=f^{-1}$). The domain of both $g \circ i_{B}$ and g is set B, and for each $b \in B$ we have $\left(g \circ i_{B}\right)(b)=g\left(i_{B}(b)\right)=g(b)$. So $g \circ i_{B}=g$. Also the domain of both $i_{A} \circ f^{-1}$ and f^{-1} is set B, and for each $b \in B$ we have $\left(i_{A} \circ f^{-1}\right)(b)=i_{A}\left(f^{-1}(b)\right)=f^{-1}(b)$ (since $\left.f^{-1}(b) \in A\right)$. So $i_{A} \circ f^{-1}=f^{-1}$.

Theorem 3.27 (continued 2)

Theorem 3.27. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Then the following two statements are equivalent:
(a) f is a bijection and $g=f^{-1}$.
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof (continued). We therefore have

$$
\begin{aligned}
g & =g \circ i_{B} \text { as shown above } \\
& =g \circ\left(f \circ f^{-1}\right) \text { since } f \circ f^{-1}=i_{B} \\
& =(g \circ f) \circ f^{-1} \text { by Theorem 3.23, Associative Law } \\
& =i_{A} \circ f^{-1} \text { by (b) } \\
& =f^{-1} \text { as shown above, }
\end{aligned}
$$

and (a) holds, as claimed.

Theorem 3.29

Theorem 3.29. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then we have $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proof. We have by Theorem 3.23, Associative Law of Function Composition:

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)= & f^{-1} \circ\left(g^{-1} \circ(g \circ f)\right) \text { by Theorem } 3.23 \\
= & f^{-1}\left(\left(g^{-1} \circ g\right) \circ f\right) \text { by Theorem } 3.23 \\
= & f^{-1} \circ\left(i_{B} \circ f\right) \text { since } g^{-1} \circ g=i_{B} \\
= & f^{-1} \circ f \text { since } i_{B} \circ f \text { as shown in the } \\
& \text { proof of Theorem } 3.27 \\
= & i_{A} .
\end{aligned}
$$

Similarly, we have $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=i_{C}$. Therefore, by Theorem 3.27 (the " $(b) \Rightarrow(a)$ " part), we have that $g \circ f$ and $f^{-1} \circ g^{-1}$ are inverse functions, as claimed

Theorem 3.29

Theorem 3.29. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then we have $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proof. We have by Theorem 3.23, Associative Law of Function Composition:

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f) & =f^{-1} \circ\left(g^{-1} \circ(g \circ f)\right) \text { by Theorem } 3.23 \\
& =f^{-1}\left(\left(g^{-1} \circ g\right) \circ f\right) \text { by Theorem } 3.23 \\
& =f^{-1} \circ\left(i_{B} \circ f\right) \text { since } g^{-1} \circ g=i_{B} \\
& =f^{-1} \circ f \text { since } i_{B} \circ f \text { as shown in the } \\
& \text { proof of Theorem } 3.27 \\
& =i_{A} .
\end{aligned}
$$

Similarly, we have $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=i_{C}$. Therefore, by Theorem 3.27 (the " $(b) \Rightarrow(a)$ " part), we have that $g \circ f$ and $f^{-1} \circ g^{-1}$ are inverse functions, as claimed.

