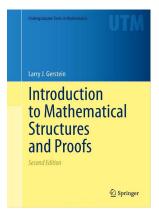
Mathematical Reasoning

Chapter 4. Finite and Infinite Sets

4.1. Cardinality; Fundamental Counting Principles—Proofs of Theorems



()

Table of contents

- Theorem 4.2
- 2 Theorem 4.4
- 3 Theorem 4.8
 - 4 Corollary 4.9. The Pigeonhole Principle
- 5 Theorem 4.11
- 6 Theorem 4.12
 - Theorem 4.13
- 8 Theorem 4.14
- Orollary 4.16

1 Corollary 4.18

Theorem 4.2

Theorem 4.2. Let A, B, C be sets. Then

(a) $A \approx A$, (b) $A \approx B$ implies $B \approx A$, and (c) $A \approx B$ and $B \approx C$ implies $A \approx C$.

Proof. In each case, we need to show the existence of a bijection.

Theorem 4.2

Theorem 4.2. Let A, B, C be sets. Then

(a)
$$A \approx A$$
,
(b) $A \approx B$ implies $B \approx A$, and
(c) $A \approx B$ and $B \approx C$ implies $A \approx C$.

Proof. In each case, we need to show the existence of a bijection. (a) The mapping $i_A : A \to A$ is a bijection from A to A, as needed.

Theorem 4.2

Theorem 4.2. Let *A*, *B*, *C* be sets. Then

(a)
$$A \approx A$$
,
(b) $A \approx B$ implies $B \approx A$, and
(c) $A \approx B$ and $B \approx C$ implies $A \approx C$.

Proof. In each case, we need to show the existence of a bijection.

(a) The mapping $i_A : A \to A$ is a bijection from A to A, as needed.

(b) Since $A \approx B$, then there is a bijection $f : A \rightarrow B$. Since f is a bijection, then $f^{-1} : B \rightarrow A$ is also a bijection by Note 3.3.A, as needed.

Theorem 4.2

Theorem 4.2. Let *A*, *B*, *C* be sets. Then

(a)
$$A \approx A$$
,
(b) $A \approx B$ implies $B \approx A$, and
(c) $A \approx B$ and $B \approx C$ implies $A \approx C$.

Proof. In each case, we need to show the existence of a bijection.

(a) The mapping $i_A : A \to A$ is a bijection from A to A, as needed.

(b) Since $A \approx B$, then there is a bijection $f : A \rightarrow B$. Since f is a bijection, then $f^{-1} : B \rightarrow A$ is also a bijection by Note 3.3.A, as needed.

(c) Since $A \approx B$ and $B \approx C$, then there are bijections $f : A \rightarrow B$ and $g : B \rightarrow C$. By Theorem 3.24(c), $g \circ f : A \rightarrow C$ is a bijection, and hence $A \approx C$, as claimed.

Theorem 4.2

Theorem 4.2. Let *A*, *B*, *C* be sets. Then

(a)
$$A \approx A$$
,
(b) $A \approx B$ implies $B \approx A$, and
(c) $A \approx B$ and $B \approx C$ implies $A \approx C$.

Proof. In each case, we need to show the existence of a bijection.

(a) The mapping $i_A : A \to A$ is a bijection from A to A, as needed.

(b) Since $A \approx B$, then there is a bijection $f : A \rightarrow B$. Since f is a bijection, then $f^{-1} : B \rightarrow A$ is also a bijection by Note 3.3.A, as needed.

(c) Since $A \approx B$ and $B \approx C$, then there are bijections $f : A \rightarrow B$ and $g : B \rightarrow C$. By Theorem 3.24(c), $g \circ f : A \rightarrow C$ is a bijection, and hence $A \approx C$, as claimed.

Example 4.4. Let X be a set with ten elements, let S be the set of all seven-element subsets of X, and let T be the set of all three-element subsets of X. Then $S \approx T$.

Solution. We establish the claim by giving the bijection, and not by counting the number of subsets in *S* and *T*. For $A \in S$, let *A'* denote the complement of *A* in *X*. Since *A* has seven elements and *X* has ten elements, then *A'* has 3 elements; that is, $A' \in T$. Define function $f : S \to T$ where for each $A \in S f$ maps $A \mapsto A'$. Then *f* is a bijection and so $S \approx T$, as claimed.

Example 4.4. Let X be a set with ten elements, let S be the set of all seven-element subsets of X, and let T be the set of all three-element subsets of X. Then $S \approx T$.

Solution. We establish the claim by giving the bijection, and not by counting the number of subsets in *S* and *T*. For $A \in S$, let *A'* denote the complement of *A* in *X*. Since *A* has seven elements and *X* has ten elements, then *A'* has 3 elements; that is, $A' \in T$. Define function $f : S \to T$ where for each $A \in S f$ maps $A \mapsto A'$. Then *f* is a bijection and so $S \approx T$, as claimed.

Theorem 4.8

Theorem 4.8. Let *n* and *m* be nonnegative integers with n > m. (a) There is no injection from \mathbb{N}_n to \mathbb{N}_m , and hence $\mathbb{N}_n \not\approx \mathbb{N}_m$. (b) If *A* is a set and #A = n, then $\#A \neq m$.

Proof. (a) We give an inductive proof on *n*.

Theorem 4.8

Theorem 4.8. Let *n* and *m* be nonnegative integers with n > m. (a) There is no injection from \mathbb{N}_n to \mathbb{N}_m , and hence $\mathbb{N}_n \not\approx \mathbb{N}_m$. (b) If *A* is a set and #A = n, then $\#A \neq m$.

Proof. (a) We give an inductive proof on *n*.

For the basis step, let n = 1. Then m = 0 and there is not an injection from \mathbb{N}_1 to \mathbb{N}_0 (nor is there even a function from \mathbb{N}_1 to \mathbb{N}_0 ; we cannot associate $1 \in \mathbb{N}_1$ with an element of $\mathbb{N}_0 = \emptyset$). Therefore $\mathbb{N}_1 \not\approx \mathbb{N}_0$ and the basis case is established.

Theorem 4.8

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from N_n to N_m, and hence N_n ≈ N_m.
(b) If A is a set and #A = n, then #A ≠ m.

Proof. (a) We give an inductive proof on *n*.

For the basis step, let n = 1. Then m = 0 and there is not an injection from \mathbb{N}_1 to \mathbb{N}_0 (nor is there even a function from \mathbb{N}_1 to \mathbb{N}_0 ; we cannot associate $1 \in \mathbb{N}_1$ with an element of $\mathbb{N}_0 = \emptyset$). Therefore $\mathbb{N}_1 \not\approx \mathbb{N}_0$ and the basis case is established.

For the induction step, suppose the result is true when n = k; that is, if $0 \le m < k$ there is no injection from \mathbb{N}_k to \mathbb{N}_m (this is the induction hypothesis). ASSUME there is an injection $f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ for some m < k + 1. As shown above, there is no function from \mathbb{N}_{k+1} to $\mathbb{N}_0 = \emptyset$ so that we have $m \ge 1$.

Theorem 4.8

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from N_n to N_m, and hence N_n ≈ N_m.
(b) If A is a set and #A = n, then #A ≠ m.

Proof. (a) We give an inductive proof on *n*.

For the basis step, let n = 1. Then m = 0 and there is not an injection from \mathbb{N}_1 to \mathbb{N}_0 (nor is there even a function from \mathbb{N}_1 to \mathbb{N}_0 ; we cannot associate $1 \in \mathbb{N}_1$ with an element of $\mathbb{N}_0 = \emptyset$). Therefore $\mathbb{N}_1 \not\approx \mathbb{N}_0$ and the basis case is established.

For the induction step, suppose the result is true when n = k; that is, if $0 \le m < k$ there is no injection from \mathbb{N}_k to \mathbb{N}_m (this is the induction hypothesis). ASSUME there is an injection $f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ for some m < k+1. As shown above, there is no function from \mathbb{N}_{k+1} to $\mathbb{N}_0 = \emptyset$ so that we have $m \ge 1$.

Theorem 4.8 (continued 1)

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from \mathbb{N}_n to \mathbb{N}_m , and hence $\mathbb{N}_n \not\approx \mathbb{N}_m$.

Proof (continued). Let g be the bijection that interchanges m with f(k + 1) and fixes everything else:

$$g(x) = \left\{egin{array}{cc} f(k+1) & ext{if } x = m \ m & ext{if } x = f(k+1) \ x & ext{otherwise.} \end{array}
ight.$$

Then the function $g \circ f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ is an injection by Theorem 3.24(a), and $(g \circ f)(k+1) = g(f(k+1)) = m$. So the restriction $(g \circ f)|_{\mathbb{N}_k}$ is an injection from \mathbb{N}_k to \mathbb{N}_{m-1} . But m-1 < k, so the existence of such a function is a CONTRADICTION to the induction hypothesis. So the assumption that there is an injection $f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ for some m < k+1is false, and hence there is no such injection. That is, $\mathbb{N}_{k+1} \not\approx \mathbb{N}_m$. So by The Principle of Mathematical Induction, (a) holds.

Theorem 4.8 (continued 1)

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from \mathbb{N}_n to \mathbb{N}_m , and hence $\mathbb{N}_n \not\approx \mathbb{N}_m$.

Proof (continued). Let g be the bijection that interchanges m with f(k+1) and fixes everything else:

$$g(x) = \left\{ egin{array}{cc} f(k+1) & ext{if } x = m \ m & ext{if } x = f(k+1) \ x & ext{otherwise.} \end{array}
ight.$$

Then the function $g \circ f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ is an injection by Theorem 3.24(a), and $(g \circ f)(k+1) = g(f(k+1)) = m$. So the restriction $(g \circ f)|_{\mathbb{N}_k}$ is an injection from \mathbb{N}_k to \mathbb{N}_{m-1} . But m-1 < k, so the existence of such a function is a CONTRADICTION to the induction hypothesis. So the assumption that there is an injection $f : \mathbb{N}_{k+1} \to \mathbb{N}_m$ for some m < k+1is false, and hence there is no such injection. That is, $\mathbb{N}_{k+1} \not\approx \mathbb{N}_m$. So by The Principle of Mathematical Induction, (a) holds.

Theorem 4.8 (continued 2)

Theorem 4.8. Let *n* and *m* be nonnegative integers with n > m. (b) If *A* is a set and #A = n, then $\#A \neq m$.

Proof (continued). (b) This is easy, given (a). ASSUME #A = m. Then $\mathbb{N}_n \approx A \approx \mathbb{N}_m$, and so $\mathbb{N}_n \approx \mathbb{N}_m$ by Theorem 4.2(c). That is, there is a bijection between \mathbb{N}_n and \mathbb{N}_m , a CONTRADICTION to part (a). So the assumption that #A = m is false, and hence $\#A \neq m$, as claimed.

Corollary 4.9. The Pigeonhole Principle

Corollary 4.9. The Pigeonhole Principle.

Let A and B be nonempty finite sets, with #A > #B. Then there is no injection from A to B. Thus for any function $A \rightarrow B$, some element in B has at least two preimages.

Proof. Suppose #A = n and #B = m where n > m. Then by Definition 4.7, there are bijections $f : \mathbb{N}_n \to A$ and $g : B \to \mathbb{N}_m$. ASSUME there is an injection $h : A \to B$. Then the function $g \circ h \circ f : \mathbb{N}_n \to \mathbb{N}_m$ is also an injection by Theorem 3.24(a). But this is a CONTRADICTION to Theorem 4.8(a). So the assumption that there is an injection $h : A \to B$ is false, and so such injection exists, as claimed.

Corollary 4.9. The Pigeonhole Principle

Corollary 4.9. The Pigeonhole Principle.

Let A and B be nonempty finite sets, with #A > #B. Then there is no injection from A to B. Thus for any function $A \rightarrow B$, some element in B has at least two preimages.

Proof. Suppose #A = n and #B = m where n > m. Then by Definition 4.7, there are bijections $f : \mathbb{N}_n \to A$ and $g : B \to \mathbb{N}_m$. ASSUME there is an injection $h : A \to B$. Then the function $g \circ h \circ f : \mathbb{N}_n \to \mathbb{N}_m$ is also an injection by Theorem 3.24(a). But this is a CONTRADICTION to Theorem 4.8(a). So the assumption that there is an injection $h : A \to B$ is false, and so such injection exists, as claimed.

Theorem 4.11. Every subset of \mathbb{N}_n is finite, and if $A \subset \mathbb{N}_n$ (that is, A is a proper subset of \mathbb{N}_n , $A \subsetneq \mathbb{N}_n$) then #A = m for some m < n.

Proof. We show the second claim that #A = m for some m < n, and the first claim will then follow. We use the Principle of Mathematical Induction on n. For the basis case, with n = 0 we have $\mathbb{N}_0 = \emptyset$ and since this has no subset, the result holds vacuously. For the induction hypothesis, suppose the result is true when n = k, and consider a subset $A \subset \mathbb{N}_{k+1}$. We now show that #A = m for some $m \leq k$.

Theorem 4.11. Every subset of \mathbb{N}_n is finite, and if $A \subset \mathbb{N}_n$ (that is, A is a proper subset of \mathbb{N}_n , $A \subsetneq \mathbb{N}_n$) then #A = m for some m < n.

Proof. We show the second claim that #A = m for some m < n, and the first claim will then follow. We use the Principle of Mathematical Induction on n. For the basis case, with n = 0 we have $\mathbb{N}_0 = \emptyset$ and since this has no subset, the result holds vacuously. For the induction hypothesis, suppose the result is true when n = k, and consider a subset $A \subset \mathbb{N}_{k+1}$. We now show that #A = m for some $m \leq k$.

<u>Case 1.</u> Suppose $k + 1 \notin A$. Then $A \subseteq \mathbb{N}_k$. If $A = \mathbb{N}_k$, then #A = k < k + 1. If $A \subset \mathbb{N}_k$ then the induction hypothesis implies #A = m for some m < k < k + 1. So the result holds for n = k + 1 in this case.

Theorem 4.11. Every subset of \mathbb{N}_n is finite, and if $A \subset \mathbb{N}_n$ (that is, A is a proper subset of \mathbb{N}_n , $A \subsetneq \mathbb{N}_n$) then #A = m for some m < n.

Proof. We show the second claim that #A = m for some m < n, and the first claim will then follow. We use the Principle of Mathematical Induction on n. For the basis case, with n = 0 we have $\mathbb{N}_0 = \emptyset$ and since this has no subset, the result holds vacuously. For the induction hypothesis, suppose the result is true when n = k, and consider a subset $A \subset \mathbb{N}_{k+1}$. We now show that #A = m for some $m \leq k$.

<u>Case 1.</u> Suppose $k + 1 \notin A$. Then $A \subseteq \mathbb{N}_k$. If $A = \mathbb{N}_k$, then #A = k < k + 1. If $A \subset \mathbb{N}_k$ then the induction hypothesis implies #A = m for some m < k < k + 1. So the result holds for n = k + 1 in this case.

Theorem 4.11 (continued)

Theorem 4.11. Every subset of \mathbb{N}_n is finite, and if $A \subset \mathbb{N}_n$ (that is, A is a proper subset of \mathbb{N}_n , $A \subsetneq \mathbb{N}_n$) then #A = m for some m < n. **Proof (continued).** ... consider a subset $A \subset \mathbb{N}_{k+1}$... <u>Case 2.</u> Suppose $k + 1 \in A$. Then $A = \{k + 1\} \cup (A \cap \mathbb{N}_k)$ and $A \cap \mathbb{N}_k \subset \mathbb{N}_k$ (that is, $A \cap \mathbb{N}_k \subsetneq \mathbb{N}_k$ since if $A \cap \mathbb{N}_k = \mathbb{N}_k$ then we would have $A = \mathbb{N}_{k+1}$, contradicting the hypothesis that $A \subsetneq \mathbb{N}_{k+1}$). By the induction hypothesis we have $\#(A \cap \mathbb{N}_k) = s$ for some $s \leq k - 1$, and so there is a bijection $f : A \cap \mathbb{N}_k \to \mathbb{N}_s$. Define function $g : A \to \mathbb{N}_{s+1}$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in A \cap \mathbb{N}_k \\ s+1 & \text{if } x = k+1. \end{cases}$$

The g is a bijection and therefore $\#A = s + 1 \le k$ (since $s \le k - 1$ then $s + 1 \le k$). So the result holds for n = k + 1 in this case.

So by the Principle of Mathematical Induction, #A = m for some m < n as claimed.

Theorem 4.11 (continued)

Theorem 4.11. Every subset of \mathbb{N}_n is finite, and if $A \subset \mathbb{N}_n$ (that is, A is a proper subset of \mathbb{N}_n , $A \subsetneq \mathbb{N}_n$) then #A = m for some m < n. **Proof (continued).** ... consider a subset $A \subset \mathbb{N}_{k+1}$... <u>Case 2.</u> Suppose $k + 1 \in A$. Then $A = \{k + 1\} \cup (A \cap \mathbb{N}_k)$ and $A \cap \mathbb{N}_k \subset \mathbb{N}_k$ (that is, $A \cap \mathbb{N}_k \subsetneq \mathbb{N}_k$ since if $A \cap \mathbb{N}_k = \mathbb{N}_k$ then we would have $A = \mathbb{N}_{k+1}$, contradicting the hypothesis that $A \subsetneq \mathbb{N}_{k+1}$). By the induction hypothesis we have $\#(A \cap \mathbb{N}_k) = s$ for some $s \leq k - 1$, and so there is a bijection $f : A \cap \mathbb{N}_k \to \mathbb{N}_s$. Define function $g : A \to \mathbb{N}_{s+1}$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in A \cap \mathbb{N}_k \\ s+1 & \text{if } x = k+1. \end{cases}$$

The g is a bijection and therefore $\#A = s + 1 \le k$ (since $s \le k - 1$ then $s + 1 \le k$). So the result holds for n = k + 1 in this case.

So by the Principle of Mathematical Induction, #A = m for some m < n as claimed.

Theorem 4.12.

- (a) Every set containing an infinite set is infinite.
- (b) Every set containing an infinite set is infinite.
- (c) If $A \subset B$ (that is, $A \subsetneq B$) and B is finite then #A < #B.

Proof. (a) Suppose $A \subseteq B$ and B is finite. So by Definition 4.7 there is a bijection $f: B \to \mathbb{N}_n$ for some integer nonnegative n. The restricted function $f|_A$ is injective and it is a bijection from A to its range f(A). By Theorem 4.11 we have $f(A) \approx \mathbb{N}_m$ for some integer $m \leq n$. Hence $A \approx f(A) \approx \mathbb{N}_m$, and by Theorem 4.2(c) $A \approx \mathbb{N}_m$ so that A is finite by Definition 4.7, as claimed.

Theorem 4.12.

- (a) Every set containing an infinite set is infinite.
- (b) Every set containing an infinite set is infinite.
- (c) If $A \subset B$ (that is, $A \subsetneq B$) and B is finite then #A < #B.

Proof. (a) Suppose $A \subseteq B$ and B is finite. So by Definition 4.7 there is a bijection $f: B \to \mathbb{N}_n$ for some integer nonnegative n. The restricted function $f|_A$ is injective and it is a bijection from A to its range f(A). By Theorem 4.11 we have $f(A) \approx \mathbb{N}_m$ for some integer $m \leq n$. Hence $A \approx f(A) \approx \mathbb{N}_m$, and by Theorem 4.2(c) $A \approx \mathbb{N}_m$ so that A is finite by Definition 4.7, as claimed.

(b) Let $A \subseteq B$. We have by part (a) that "B finite" \Rightarrow "A finite." The contrapositive of (a) is "A not infinite" \Rightarrow "B infinite," as claimed.

Theorem 4.12.

- (a) Every set containing an infinite set is infinite.
- (b) Every set containing an infinite set is infinite.
- (c) If $A \subset B$ (that is, $A \subsetneq B$) and B is finite then #A < #B.

Proof. (a) Suppose $A \subseteq B$ and B is finite. So by Definition 4.7 there is a bijection $f: B \to \mathbb{N}_n$ for some integer nonnegative n. The restricted function $f|_A$ is injective and it is a bijection from A to its range f(A). By Theorem 4.11 we have $f(A) \approx \mathbb{N}_m$ for some integer $m \leq n$. Hence $A \approx f(A) \approx \mathbb{N}_m$, and by Theorem 4.2(c) $A \approx \mathbb{N}_m$ so that A is finite by Definition 4.7, as claimed.

(b) Let $A \subseteq B$. We have by part (a) that "B finite" \Rightarrow "A finite." The contrapositive of (a) is "A not infinite" \Rightarrow "B infinite," as claimed.

Theorem 4.12 (continued)

Theorem 4.12.

- (a) Every subset of a finite set is finite.
- (b) Every set containing an infinite set is infinite.
- (c) If $A \subset B$ (that is, $A \subsetneq B$) and B is finite then #A < #B.

Proof (continued). (c) Suppose $A \subsetneq B$ and B is finite. So by Definition 4.7 there is a bijection $f : B \to \mathbb{N}_n$ for some integer nonnegative n = #B. The restricted function $f|_A$ is injective and it is a bijection from A to its range $f|_A(A)$ (so $A \approx f|_A(A)$). Since $A \subsetneq B$ then there is some $b \in B$ where $b \notin A$. Now $f(b) \in f(B) = \mathbb{N}_n$, but since f is injective then there is no $a \in A$ such that f(a) = f(b). That is, $f|_A$ is not onto f(B). Hence the image of $f|_A$ is a proper subset of $f(B) = \mathbb{N}_n$. By Theorem 4.11 we have $f|_A(A) \approx \mathbb{N}_m$ for some integer m < n. Hence $A \approx f|_A(A) \approx \mathbb{N}_m$, and #A = m. Therefore, m = #A < #B = n, as claimed.

Theorem 4.12 (continued)

Theorem 4.12.

- (a) Every subset of a finite set is finite.
- (b) Every set containing an infinite set is infinite.
- (c) If $A \subset B$ (that is, $A \subsetneq B$) and B is finite then #A < #B.

Proof (continued). (c) Suppose $A \subsetneq B$ and B is finite. So by Definition 4.7 there is a bijection $f : B \to \mathbb{N}_n$ for some integer nonnegative n = #B. The restricted function $f|_A$ is injective and it is a bijection from A to its range $f|_A(A)$ (so $A \approx f|_A(A)$). Since $A \subsetneq B$ then there is some $b \in B$ where $b \notin A$. Now $f(b) \in f(B) = \mathbb{N}_n$, but since f is injective then there is no $a \in A$ such that f(a) = f(b). That is, $f|_A$ is not onto f(B). Hence the image of $f|_A$ is a proper subset of $f(B) = \mathbb{N}_n$. By Theorem 4.11 we have $f|_A(A) \approx \mathbb{N}_m$ for some integer m < n. Hence $A \approx f|_A(A) \approx \mathbb{N}_m$, and #A = m. Therefore, m = #A < #B = n, as claimed.

Theorem 4.13. The set \mathbb{N} of natural numbers is infinite.

Proof. ASSUME \mathbb{N} is finite. Then by Definition 4.7 there is a bijection $f: \mathbb{N} \to \mathbb{N}_m$ for some $m \in \mathbb{N}$. Let *n* be a natural number such that n > m (this can be done by the *Axiom of Infinity*; see my online notes Introduction to Set Theory on Section 3.1. Introduction to Natural Numbers). Of course $\mathbb{N}_n \subset \mathbb{N}$. Next $f|_{\mathbb{N}_n}$ is an injection from \mathbb{N}_n into \mathbb{N}_m . But this CONTRADICTS Theorem 4.8(a) (since n > m). So the assumption that \mathbb{N} is finite is false, and hence \mathbb{N} is infinite, as claimed. \Box

Theorem 4.13. The set \mathbb{N} of natural numbers is infinite.

Proof. ASSUME \mathbb{N} is finite. Then by Definition 4.7 there is a bijection $f : \mathbb{N} \to \mathbb{N}_m$ for some $m \in \mathbb{N}$. Let *n* be a natural number such that n > m (this can be done by the *Axiom of Infinity*; see my online notes Introduction to Set Theory on Section 3.1. Introduction to Natural Numbers). Of course $\mathbb{N}_n \subset \mathbb{N}$. Next $f|_{\mathbb{N}_n}$ is an injection from \mathbb{N}_n into \mathbb{N}_m . But this CONTRADICTS Theorem 4.8(a) (since n > m). So the assumption that \mathbb{N} is finite is false, and hence \mathbb{N} is infinite, as claimed. \Box

Theorem 4.14. If A and B are disjoint finite sets, then $A \cup B$ is finite and $\#(A \cup B) = \#A + \#B$.

Proof. Suppose #A = m and #B = n. Then by Definition 4.7, there exist bijections $f : \mathbb{N}_m \to A$ and $g : \mathbb{N}_n \to B$. Define $h : \mathbb{N}_{m+n} \to A \cup B$ by

$$h(i) = \begin{cases} f(i) & \text{if } 1 \le i \le m \\ g(i-m) & \text{if } m+1 \le i \le m+n. \end{cases}$$

Theorem 4.14. If A and B are disjoint finite sets, then $A \cup B$ is finite and $\#(A \cup B) = \#A + \#B$.

Proof. Suppose #A = m and #B = n. Then by Definition 4.7, there exist bijections $f : \mathbb{N}_m \to A$ and $g : \mathbb{N}_n \to B$. Define $h : \mathbb{N}_{m+n} \to A \cup B$ by

$$h(i) = \begin{cases} f(i) & \text{if } 1 \leq i \leq m \\ g(i-m) & \text{if } m+1 \leq i \leq m+n \end{cases}$$

Since for $a \in A$ we have $f(j_a) = a$ for some $j_a \in \{1, 2, ..., m\} = \mathbb{N}_m$ (because $f : \mathbb{N}_m \to A$ is a bijection), and for $b \in B$ we have $g(j_b) = b$ for some $j_b \in \{1, 2, ..., \mathbb{N}_n \text{ (because } g : \mathbb{N}_n \to B \text{ is a bijection})$. So for $a \in A$ we have $h(j_a) = f(j_a) = a$, and for $b \in B$ we have $h(j_b + m) = f((j_b + m) - m) = f(j_b) = b$. Now j_a is in $\{1, 2, ..., m\}$ and $j_b + m$ is in $\{m + 1, m + 2, ..., m + n\}$, so $h : \mathbb{N}_{m+n} \to A \cup B$ is a surjection.

Theorem 4.14. If A and B are disjoint finite sets, then $A \cup B$ is finite and $\#(A \cup B) = \#A + \#B$.

Proof. Suppose #A = m and #B = n. Then by Definition 4.7, there exist bijections $f : \mathbb{N}_m \to A$ and $g : \mathbb{N}_n \to B$. Define $h : \mathbb{N}_{m+n} \to A \cup B$ by

$$h(i) = \begin{cases} f(i) & \text{if } 1 \leq i \leq m \\ g(i-m) & \text{if } m+1 \leq i \leq m+n \end{cases}$$

Since for $a \in A$ we have $f(j_a) = a$ for some $j_a \in \{1, 2, ..., m\} = \mathbb{N}_m$ (because $f : \mathbb{N}_m \to A$ is a bijection), and for $b \in B$ we have $g(j_b) = b$ for some $j_b \in \{1, 2, ..., \mathbb{N}_n \text{ (because } g : \mathbb{N}_n \to B \text{ is a bijection})$. So for $a \in A$ we have $h(j_a) = f(j_a) = a$, and for $b \in B$ we have $h(j_b + m) = f((j_b + m) - m) = f(j_b) = b$. Now j_a is in $\{1, 2, ..., m\}$ and $j_b + m$ is in $\{m + 1, m + 2, ..., m + n\}$, so $h : \mathbb{N}_{m+n} \to A \cup B$ is a surjection.

Theorem 4.14 (continued)

Theorem 4.14. If A and B are disjoint finite sets, then $A \cup B$ is finite and $\#(A \cup B) = \#A + \#B$.

Proof (continued). Let $c \in A \cup B$. Suppose h(j) = h(j') = c. From the definition of h, if $c \in A$ then h(j) = f(j) = c = f(j') and since f is an injection then j = j'. Similarly, if $c \in B$ then h(j) = g(j - m) = c = g(j' - m) and since g is an injection then j - m = j' - m or j = j'. Notice that we cannot have $c \in A \cap B$ since A and B are disjoint. Therefore, h is an injection.

That is, $h : \mathbb{N}_{m+n} \to A \cup B$ is a bijection and so $\#(A \cup B) = m + n = \#A + \#B$, as claimed.

Corollary 4.16

Corollary 4.16. If A and B are finite sets (not necessarily disjoint), then $A \cup B$ is finite and

$$#(A \cup B) = #A + #B - #(A \cap B).$$

Proof. We write $A \cup B$ as a disjoint union of three pairwise disjoint sets: $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$. Then

 $#(A \cup B) = #(A - B) + #(A \cap B) + #(B - A)$ by Corollary 4.15 = $[#(A - B) + #(A \cap B)] + [#(B - A) + #(A \cap B)]$ $-#(A \cap B)$

=
$$#A + #B - #(A \cap B)$$
 by Theorem 4.14,
since $A = (A - B) \cup (A \cap B)$ and $B = (B - A) + (A \cap B)$,

as claimed.

Corollary 4.16

Corollary 4.16. If A and B are finite sets (not necessarily disjoint), then $A \cup B$ is finite and

$$#(A \cup B) = #A + #B - #(A \cap B).$$

Proof. We write $A \cup B$ as a disjoint union of three pairwise disjoint sets: $A \cup B = (A - B) \cup (A \cap B) \cup (B - A)$. Then

as claimed.

Theorem 4.17. if #A = m and #B = n, then $\#(A \times B) = mn$.

Proof. If $A = \emptyset$ then $A \times B = \emptyset$ and the claim follows since $\#\emptyset = 0$. Otherwise, let $A = \{a_1, a_2, \ldots, a_m\}$, say. Then $A \times B = \bigcup_{i=1}^m (\{a_i\} \times B)$ and this is a union of *m* pairwise disjoint sets, each with the same cardinality as *B* (namely, $\#(\{a_i\} \times B) = n$). So by Corollary 4.15, $\#(A \times B) = \sum_{i=1}^m n = mn$, as claimed. **Theorem 4.17.** if #A = m and #B = n, then $\#(A \times B) = mn$.

Proof. If $A = \emptyset$ then $A \times B = \emptyset$ and the claim follows since $\#\emptyset = 0$. Otherwise, let $A = \{a_1, a_2, \ldots, a_m\}$, say. Then $A \times B = \bigcup_{i=1}^m (\{a_i\} \times B)$ and this is a union of *m* pairwise disjoint sets, each with the same cardinality as *B* (namely, $\#(\{a_i\} \times B) = n)$). So by Corollary 4.15, $\#(A \times B) = \sum_{i=1}^m n = mn$, as claimed. **Corollary 4.18.** Let $A = \{a_1, a_2, \dots, a_m\}$, and for each *i* satisfying $1 \le i \le m$, let B_i be a set with $\#B_i = n$. Then $\#(\bigcup_{i=1}^m (\{a_i\} \times B_i)) = mn$.

Proof. Let $S_i = \{a_i\} \times B_i$ for $1 \le i \le m$. Then the sets S_i are pairwise disjoint (since the first coordinates of pairs in S_i and pairs in S_j are different) and $\#S_i = n$ for each i with $1 \le i \le m$. Then by Corollary 4.15, $\#(\bigcup_{i=1}^m (\{a_i\} \times B_i)) = \sum_{i=1}^m n = mn$, as claimed.

Corollary 4.18. Let $A = \{a_1, a_2, \dots, a_m\}$, and for each *i* satisfying $1 \le i \le m$, let B_i be a set with $\#B_i = n$. Then $\#(\bigcup_{i=1}^m (\{a_i\} \times B_i)) = mn$.

Proof. Let $S_i = \{a_i\} \times B_i$ for $1 \le i \le m$. Then the sets S_i are pairwise disjoint (since the first coordinates of pairs in S_i and pairs in S_j are different) and $\#S_i = n$ for each i with $1 \le i \le m$. Then by Corollary 4.15, $\#(\bigcup_{i=1}^m (\{a_i\} \times B_i)) = \sum_{i=1}^m n = mn$, as claimed.