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Theorem 4.2

Theorem 4.2

Theorem 4.2. Let A,B,C be sets. Then

(a) A ≈ A,

(b) A ≈ B implies B ≈ A, and

(c) A ≈ B and B ≈ C implies A ≈ C .

Proof. In each case, we need to show the existence of a bijection.

(a) The mapping iA : A → A is a bijection from A to A, as needed.

(b) Since A ≈ B, then there is a bijection f : A → B. Since f is a
bijection, then f −1 : B → A is also a bijection by Note 3.3.A, as needed.

(c) Since A ≈ B and B ≈ C , then there are bijections f : A → B and
g : B → C . By Theorem 3.24(c), g ◦ f : A → C is a bijection, and hence
A ≈ C , as claimed.
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Theorem 4.4

Theorem 4.4

Example 4.4. Let X be a set with ten elements, let S be the set of all
seven-element subsets of X , and let T be the set of all three-element
subsets of X . Then S ≈ T .

Solution. We establish the claim by giving the bijection, and not by
counting the number of subsets in S and T . For A ∈ S , let A′ denote the
complement of A in X . Since A has seven elements and X has ten
elements, then A′ has 3 elements; that is, A′ ∈ T . Define function
f : S → T where for each A ∈ S f maps A 7→ A′. Then f is a bijection
and so S ≈ T , as claimed.
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Theorem 4.8

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from Nn to Nm, and hence Nn 6≈ Nm.

(b) If A is a set and #A = n, then #A 6= m.

Proof. (a) We give an inductive proof on n.

For the basis step, let n = 1. Then m = 0 and there is not an injection
from N1 to N0 (nor is there even a function from N1 to N0; we cannot
associate 1 ∈ N1 with an element of N0 = ∅). Therefore N1 6≈ N0 and the
basis case is established.

For the induction step, suppose the result is true when n = k; that is, if
0 ≤ m < k there is no injection from Nk to Nm (this is the induction
hypothesis). ASSUME there is an injection f : Nk+1 → Nm for some
m < k + 1. As shown above, there is no function from Nk+1 to N0 = ∅ so
that we have m ≥ 1.
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Theorem 4.8

Theorem 4.8 (continued 1)

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from Nn to Nm, and hence Nn 6≈ Nm.

Proof (continued). Let g be the bijection that interchanges m with
f (k + 1) and fixes everything else:

g(x) =


f (k + 1) if x = m

m if x = f (k + 1)
x otherwise.

Then the function g ◦ f : Nk+1 → Nm is an injection by Theorem 3.24(a),
and (g ◦ f )(k + 1) = g(f (k + 1)) = m. So the restriction (g ◦ f )|Nk

is an
injection from Nk to Nm−1. But m − 1 < k, so the existence of such a
function is a CONTRADICTION to the induction hypothesis. So the
assumption that there is an injection f : Nk+1 → Nm for some m < k + 1
is false, and hence there is no such injection. That is, Nk+1 6≈ Nm. So by
The Principle of Mathematical Induction, (a) holds.
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Theorem 4.8

Theorem 4.8 (continued 2)

Theorem 4.8. Let n and m be nonnegative integers with n > m.

(b) If A is a set and #A = n, then #A 6= m.

Proof (continued). (b) This is easy, given (a). ASSUME #A = m. Then
Nn ≈ A ≈ Nm, and so Nn ≈ Nm by Theorem 4.2(c). That is, there is a
bijection between Nn and Nm, a CONTRADICTION to part (a). So the
assumption that #A = m is false, and hence #A 6= m, as claimed.
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Corollary 4.9. The Pigeonhole Principle

Corollary 4.9. The Pigeonhole Principle

Corollary 4.9. The Pigeonhole Principle.
Let A and B be nonempty finite sets, with #A > #B. Then there is no
injection from A to B. Thus for any function A → B, some element in B
has at least two preimages.

Proof. Suppose #A = n and #B = m where n > m. Then by Definition
4.7, there are bijections f : Nn → A and g : B → Nm. ASSUME there is
an injection h : A → B. Then the function g ◦ h ◦ f : Nn → Nm is also an
injection by Theorem 3.24(a). But this is a CONTRADICTION to
Theorem 4.8(a). So the assumption that there is an injection h : A → B is
false, and so such injection exists, as claimed.
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Theorem 4.11

Theorem 4.11

Theorem 4.11. Every subset of Nn is finite, and if A ⊂ Nn (that is, A is a
proper subset of Nn, A ( Nn) then #A = m for some m < n.

Proof. We show the second claim that #A = m for some m < n, and the
first claim will then follow. We use the Principle of Mathematical
Induction on n. For the basis case, with n = 0 we have N0 = ∅ and since
this has no subset, the result holds vacuously. For the induction
hypothesis, suppose the result is true when n = k, and consider a subset
A ⊂ Nk+1. We now show that #A = m for some m ≤ k.

Case 1. Suppose k + 1 6∈ A. Then A ⊆ Nk . If A = Nk , then
#A = k < k + 1. If A ⊂ Nk then the induction hypothesis implies
#A = m for some m < k < k + 1. So the result holds for n = k + 1 in
this case.
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Theorem 4.11

Theorem 4.11 (continued)

Theorem 4.11. Every subset of Nn is finite, and if A ⊂ Nn (that is, A is a
proper subset of Nn, A ( Nn) then #A = m for some m < n.

Proof (continued). . . . consider a subset A ⊂ Nk+1 . . .
Case 2. Suppose k + 1 ∈ A. Then A = {k + 1} ∪ (A ∩ Nk) and
A ∩ Nk ⊂ Nk (that is, A ∩ Nk ( Nk since if A ∩ Nk = Nk then we would
have A = Nk+1, contradicting the hypothesis that A ( Nk+1). By the
induction hypothesis we have #(A ∩ Nk) = s for some s ≤ k − 1, and so
there is a bijection f : A ∩ Nk → Ns . Define function g : A → Ns+1 by

g(x) =

{
f (x) if x ∈ A ∩ Nk

s + 1 if x = k + 1.

The g is a bijection and therefore #A = s + 1 ≤ k (since s ≤ k − 1 then
s + 1 ≤ k). So the result holds for n = k + 1 in this case.

So by the Principle of Mathematical Induction, #A = m for some m < n
as claimed.
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Theorem 4.12

Theorem 4.12

Theorem 4.12.

(a) Every set containing an infinite set is infinite.

(b) Every set containing an infinite set is infinite.

(c) If A ⊂ B (that is, A ( B) and B is finite then #A < #B.

Proof. (a) Suppose A ⊆ B and B is finite. So by Definition 4.7 there is a
bijection f : B → Nn for some integer nonnegative n. The restricted
function f |A is injective and it is a bijection from A to its range f (A). By
Theorem 4.11 we have f (A) ≈ Nm for some integer m ≤ n. Hence
A ≈ f (A) ≈ Nm, and by Theorem 4.2(c) A ≈ Nm so that A is finite by
Definition 4.7, as claimed.

(b) Let A ⊆ B. We have by part (a) that “B finite” ⇒ “A finite.” The
contrapositive of (a) is “A not infinite” ⇒ “B infinite,” as claimed.
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Theorem 4.12

Theorem 4.12 (continued)

Theorem 4.12.

(a) Every subset of a finite set is finite.

(b) Every set containing an infinite set is infinite.

(c) If A ⊂ B (that is, A ( B) and B is finite then #A < #B.

Proof (continued). (c) Suppose A ( B and B is finite. So by Definition
4.7 there is a bijection f : B → Nn for some integer nonnegative n = #B.
The restricted function f |A is injective and it is a bijection from A to its
range f |A(A) (so A ≈ f |A(A)). Since A ( B then there is some b ∈ B
where b 6∈ A. Now f (b) ∈ f (B) = Nn, but since f is injective then there is
no a ∈ A such that f (a) = f (b). That is, f |A is not onto f (B). Hence the
image of f |A is a proper subset of f (B) = Nn. By Theorem 4.11 we have
f |A(A) ≈ Nm for some integer m < n. Hence A ≈ f |A(A) ≈ Nm, and
#A = m. Therefore, m = #A < #B = n, as claimed.
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Theorem 4.13

Theorem 4.13

Theorem 4.13. The set N of natural numbers is infinite.

Proof. ASSUME N is finite. Then by Definition 4.7 there is a bijection
f : N → Nm for some m ∈ N. Let n be a natural number such that n > m
(this can be done by the Axiom of Infinity; see my online notes
Introduction to Set Theory on Section 3.1. Introduction to Natural
Numbers). Of course Nn ⊂ N. Next f |Nn is an injection from Nn into Nm.
But this CONTRADICTS Theorem 4.8(a) (since n > m). So the
assumption that N is finite is false, and hence N is infinite, as claimed.

() Mathematical Reasoning February 4, 2022 13 / 18

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-3-1.pdf
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-3-1.pdf


Theorem 4.13

Theorem 4.13

Theorem 4.13. The set N of natural numbers is infinite.

Proof. ASSUME N is finite. Then by Definition 4.7 there is a bijection
f : N → Nm for some m ∈ N. Let n be a natural number such that n > m
(this can be done by the Axiom of Infinity; see my online notes
Introduction to Set Theory on Section 3.1. Introduction to Natural
Numbers). Of course Nn ⊂ N. Next f |Nn is an injection from Nn into Nm.
But this CONTRADICTS Theorem 4.8(a) (since n > m). So the
assumption that N is finite is false, and hence N is infinite, as claimed.

() Mathematical Reasoning February 4, 2022 13 / 18

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-3-1.pdf
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-3-1.pdf


Theorem 4.14

Theorem 4.14

Theorem 4.14. If A and B are disjoint finite sets, then A∪B is finite and
#(A ∪ B) = #A + #B.

Proof. Suppose #A = m and #B = n. Then by Definition 4.7, there
exist bijections f : Nm → A and g : Nn → B. Define h : Nm+n → A∪B by

h(i) =

{
f (i) if 1 ≤ i ≤ m

g(i −m) if m + 1 ≤ i ≤ m + n.

Since for a ∈ A we have f (ja) = a for some ja ∈ {1, 2, . . . ,m} = Nm

(because f : Nm → A is a bijection), and for b ∈ B we have g(jb) = b for
some jb ∈ {1, 2, . . . , Nn (because g : Nn → B is a bijection). So for a ∈ A
we have h(ja) = f (ja) = a, and for b ∈ B we have
h(jb + m) = f ((jb + m)−m) = f (jb) = b. Now ja is in {1, 2, . . . ,m} and
jb + m is in {m + 1,m + 2, . . . ,m + n}, so h : Nm+n → A ∪ B is a
surjection.
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Theorem 4.14. If A and B are disjoint finite sets, then A∪B is finite and
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Theorem 4.14

Theorem 4.14 (continued)

Theorem 4.14. If A and B are disjoint finite sets, then A∪B is finite and
#(A ∪ B) = #A + #B.

Proof (continued). Let c ∈ A ∪ B. Suppose h(j) = h(j ′) = c . From the
definition of h, if c ∈ A then h(j) = f (j) = c = f (j ′) and since f is an
injection then j = j ′. Similarly, if c ∈ B then
h(j) = g(j −m) = c = g(j ′ −m) and since g is an injection then
j −m = j ′ −m or j = j ′. Notice that we cannot have c ∈ A ∩ B since A
and B are disjoint. Therefore, h is an injection.

That is, h : Nm+n → A ∪ B is a bijection and so
#(A ∪ B) = m + n = #A + #B, as claimed.
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Corollary 4.16

Corollary 4.16. If A and B are finite sets (not necessarily disjoint), then
A ∪ B is finite and

#(A ∪ B) = #A + #B −#(A ∩ B).

Proof. We write A ∪ B as a disjoint union of three pairwise disjoint sets:
A ∪ B = (A− B) ∪ (A ∩ B) ∪ (B − A). Then

#(A ∪ B) = #(A− B) + #(A ∩ B) + #(B − A) by Corollary 4.15

= [#(A− B) + #(A ∩ B)] + [#(B − A) + #(A ∩ B)]

−#(A ∩ B)

= #A + #B −#(A ∩ B) by Theorem 4.14,

since A = (A− B) ∪ (A ∩ B) and B = (B − A) + (A ∩ B),

as claimed.
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Theorem 4.17

Theorem 4.17. if #A = m and #B = n, then #(A× B) = mn.

Proof. If A = ∅ then A× B = ∅ and the claim follows since #∅ = 0.
Otherwise, let A = {a1, a2, . . . , am}, say. Then A× B = ∪m

i=1({ai} × B)
and this is a union of m pairwise disjoint sets, each with the same
cardinality as B (namely, #({ai} × B) = n). So by Corollary 4.15,
#(A× B) =

∑m
i=1 n = mn, as claimed.
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Corollary 4.18

Corollary 4.18

Corollary 4.18. Let A = {a1, a2, . . . , am}, and for each i satisfying
1 ≤ i ≤ m, let Bi be a set with #Bi = n. Then #(∪m

i=1({ai}×Bi )) = mn.

Proof. Let Si = {ai} × Bi for 1 ≤ i ≤ m. Then the sets Si are pairwise
disjoint (since the first coordinates of pairs in Si and pairs in Sj are
different) and #Si = n for each i with 1 ≤ i ≤ m. Then by Corollary 4.15,
#(∪m

i=1({ai} × Bi )) =
∑m

i=1 n = mn, as claimed.
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