Mathematical Reasoning

Chapter 4. Finite and Infinite Sets 4.2. Comparing Sets, Finite or Infinite—Proofs of Theorems

()

Lemma 4.25

Lemma 4.25. If A is any set, then \emptyset is an injective function from \emptyset to A.

Proof. This result is true vacuously. First, notice that $\emptyset \subseteq \emptyset \times A$, as needed. Also,

if $x \in \emptyset$ then $(x, y) \in \emptyset$ for exactly one $y \in A$

is true vacuously (since the hypothesis is false; there are are no $x \in \emptyset$), so that \emptyset really is a function from \emptyset to A (see Definition 3.2).

Lemma 4.25

Lemma 4.25. If A is any set, then \emptyset is an injective function from \emptyset to A.

Proof. This result is true vacuously. First, notice that $\emptyset \subseteq \emptyset \times A$, as needed. Also,

if $x \in \emptyset$ then $(x, y) \in \emptyset$ for exactly one $y \in A$

is true vacuously (since the hypothesis is false; there are no $x \in \emptyset$), so that \emptyset really is a function from \emptyset to A (see Definition 3.2). For injectivity, we need to check the implication (see Definition 3.10):

if $x_1, x_2 \in \emptyset$ and $\emptyset(x_1) = \emptyset(x_2)$ then $x_1 = x_2$.

Again, this is vacuously true since the hypothesis is false (there are no $x_1, x_2 \in \emptyset$). Therefore \emptyset is an injective function from \emptyset to A, as claimed.

Lemma 4.25

Lemma 4.25. If A is any set, then \emptyset is an injective function from \emptyset to A. **Proof.** This result is true vacuously. First, notice that $\emptyset \subseteq \emptyset \times A$, as needed. Also,

if
$$x \in \emptyset$$
 then $(x, y) \in \emptyset$ for exactly one $y \in A$

is true vacuously (since the hypothesis is false; there are no $x \in \emptyset$), so that \emptyset really is a function from \emptyset to A (see Definition 3.2). For injectivity, we need to check the implication (see Definition 3.10):

if
$$x_1, x_2 \in \emptyset$$
 and $\emptyset(x_1) = \emptyset(x_2)$ then $x_1 = x_2$.

Again, this is vacuously true since the hypothesis is false (there are no $x_1, x_2 \in \emptyset$). Therefore \emptyset is an injective function from \emptyset to A, as claimed.

Theorem 4.26. Let A and B be finite sets. Then

(a)
$$\#A \leq \#B \Leftrightarrow$$
 There is an injection from A to B,

(b)
$$\#A = \#B \Leftrightarrow A \approx B$$
, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let #A = m and #B = n. Then there are bijections f and g such that $\mathbb{N}_m \xrightarrow{f} A$ and $\mathbb{N}_n \xrightarrow{g} B$.

Theorem 4.26. Let A and B be finite sets. Then

Proof. Let #A = m and #B = n. Then there are bijections f and g such that $\mathbb{N}_m \xrightarrow{f} A$ and $\mathbb{N}_n \xrightarrow{g} B$.

(a) If $m \leq n$ then there is an injection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is an injection (by Theorem 3.24(a)), as claimed.

Theorem 4.26. Let A and B be finite sets. Then

(a)
$$\#A \le \#B \Leftrightarrow$$
 There is an injection from A to B,
(b) $\#A = \#B \Leftrightarrow A \approx B$, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let #A = m and #B = n. Then there are bijections f and g such that $\mathbb{N}_m \xrightarrow{f} A$ and $\mathbb{N}_n \xrightarrow{g} B$.

(a) If $m \leq n$ then there is an injection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is an injection (by Theorem 3.24(a)), as claimed.

Conversely, suppose there is an injection $h: A \to B$. Then the mapping $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is an injection (by Theorem 3.24(a)), so that $m \leq n$ by the contrapositive of Theorem 4.8(a).

Theorem 4.26. Let A and B be finite sets. Then

(a)
$$\#A \le \#B \Leftrightarrow$$
 There is an injection from A to B,
(b) $\#A = \#B \Leftrightarrow A \approx B$, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let #A = m and #B = n. Then there are bijections f and g such that $\mathbb{N}_m \xrightarrow{f} A$ and $\mathbb{N}_n \xrightarrow{g} B$.

(a) If $m \leq n$ then there is an injection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is an injection (by Theorem 3.24(a)), as claimed.

Conversely, suppose there is an injection $h: A \to B$. Then the mapping $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is an injection (by Theorem 3.24(a)), so that $m \leq n$ by the contrapositive of Theorem 4.8(a).

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then

Proof (continued). (b) If m = n then there is an bijection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then

Proof (continued). (b) If m = n then there is an bijection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Conversely, suppose $A \approx B$ so that there is an bijection $h: A \to B$. Then the mapping $g^{-1} \circ h \circ f: \mathbb{N}_m \to \mathbb{N}_n$ is a bijection (by Theorem 3.24(c)), so that m = n by the contrapositive of Theorem 4.8(c) (applied twice).

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then

Proof (continued). (b) If m = n then there is an bijection $j : \mathbb{N}_m \to \mathbb{N}_n$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1} : A \to B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Conversely, suppose $A \approx B$ so that there is an bijection $h: A \to B$. Then the mapping $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is a bijection (by Theorem 3.24(c)), so that m = n by the contrapositive of Theorem 4.8(c) (applied twice).

Theorem 4.26 (continued 2)

Theorem 4.26. Let *A* and *B* be finite sets. Then

(a)
$$\#A \leq \#B \Leftrightarrow$$
 There is an injection from A to B,

(b)
$$\#A = \#B \Leftrightarrow A \approx B$$
, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose m < n. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h : A \to B$. Then the map $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then

(a)
$$\#A \leq \#B \Leftrightarrow$$
 There is an injection from A to B,

(b)
$$\#A = \#B \Leftrightarrow A \approx B$$
, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose m < n. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h : A \to B$. Then the map $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Second, suppose there is an injection but no bijection from A to B. Then by part (a) we have $\#A \leq \#B$. Since there is no bijection, then $A \not\approx B$ and so by the contrapositive of part (b) we have $\#A \neq \#B$. That is, #A < #B, as claimed.

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then

(a)
$$\#A \leq \#B \Leftrightarrow$$
 There is an injection from A to B,

(b)
$$\#A = \#B \Leftrightarrow A \approx B$$
, and

(c) $#A < #B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose m < n. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h : A \to B$. Then the map $g^{-1} \circ h \circ f : \mathbb{N}_m \to \mathbb{N}_n$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Second, suppose there is an injection but no bijection from A to B. Then by part (a) we have $\#A \le \#B$. Since there is no bijection, then $A \not\approx B$ and so by the contrapositive of part (b) we have $\#A \ne \#B$. That is, #A < #B, as claimed.

Theorem 4.30. Let *A*, *B*, and *C* be sets. Then (a) $#A < #B < #C \Rightarrow #A < #C$, (b) $#A < #B \le #C \Rightarrow #A < #C$, and (c) $#A \le #B < #C \Rightarrow #A < #C$.

Proof. (a) If #A < #B < #C then there is an injection $f : A \to B$ and there is an injection $g : B \to C$. By Theorem 3.24(a) the composition $g \circ f : A \to C$ is an injection and hence $\#A \le \#C$.

Theorem 4.30. Let A, B, and C be sets. Then

(a) $#A < #B < #C \Rightarrow #A < #C$, (b) $#A < #B \le #C \Rightarrow #A < #C$, and (c) $#A \le #B < #C \Rightarrow #A < #C$.

Proof. (a) If #A < #B < #C then there is an injection $f : A \to B$ and there is an injection $g : B \to C$. By Theorem 3.24(a) the composition $g \circ f : A \to C$ is an injection and hence $\#A \le \#C$.

ASSUME $A \approx C$. Then there is a bijection $h: C \to A$. Since #B < #C then there is an injection $g: B \to C$. Then the composition $h \circ g: B \to A$ is injective by Theorem 3.24(a), so that $\#B \leq \#A$. But the hypothesis #A < #B implies the weaker statement #A leq #B, so that the Schröder-Bernstein Theorem (Theorem 4.28) then gives that $A \approx B$. But this CONTRADICTS the hypothesis that #A < #B. So the assumption that $A \approx C$ is false, and we must have #A < #C, as claimed.

Theorem 4.30. Let A, B, and C be sets. Then

(a) $#A < #B < #C \Rightarrow #A < #C$, (b) $#A < #B \le #C \Rightarrow #A < #C$, and (c) $#A \le #B < #C \Rightarrow #A < #C$.

Proof. (a) If #A < #B < #C then there is an injection $f : A \to B$ and there is an injection $g : B \to C$. By Theorem 3.24(a) the composition $g \circ f : A \to C$ is an injection and hence $\#A \le \#C$.

ASSUME $A \approx C$. Then there is a bijection $h: C \to A$. Since #B < #C then there is an injection $g: B \to C$. Then the composition $h \circ g: B \to A$ is injective by Theorem 3.24(a), so that $\#B \leq \#A$. But the hypothesis #A < #B implies the weaker statement #A leq #B, so that the Schröder-Bernstein Theorem (Theorem 4.28) then gives that $A \approx B$. But this CONTRADICTS the hypothesis that #A < #B. So the assumption that $A \approx C$ is false, and we must have #A < #C, as claimed.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof. First, if $S = \emptyset$, then $P(S) = \{\emptyset\}$. So #S = 0 and #P(S) = 1 and the claim holds.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof. First, if $S = \emptyset$, then $P(S) = \{\emptyset\}$. So #S = 0 and #P(S) = 1 and the claim holds.

Next, suppose $S \neq \emptyset$. Define a function $g: S \to P(S)$ as $g(x) = \{x\}$ for each $x \in S$. Then g is injective since $g(x_1) = g(x_2)$ implies $\{x_1\} = \{x_2\}$ and this implies $x_1 = x_2$. Since g is injective, then $\#S \leq \#P(S)$.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof. First, if $S = \emptyset$, then $P(S) = \{\emptyset\}$. So #S = 0 and #P(S) = 1 and the claim holds.

Next, suppose $S \neq \emptyset$. Define a function $g: S \to P(S)$ as $g(x) = \{x\}$ for each $x \in S$. Then g is injective since $g(x_1) = g(x_2)$ implies $\{x_1\} = \{x_2\}$ and this implies $x_1 = x_2$. Since g is injective, then $\#S \leq \#P(S)$.

To establish the strict inequality, we show that there is no bijection from S to P(S). ASSUME there is a bijection $f : S \to P(S)$. Then for each $x \in S$ we have $f(x) \in P(S)$. So either $x \in f(x)$ or $x \notin f(x)$. Define set $E \subseteq S$ as $E = \{x \in S \mid x \notin f(x)\}$. Since $E \subseteq S$ then $E \in P(S)$. Since f is onto P(S) then there is some $z \in S$ such that f(z) = E. We consider the location of z in relation to set E.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof. First, if $S = \emptyset$, then $P(S) = \{\emptyset\}$. So #S = 0 and #P(S) = 1 and the claim holds.

Next, suppose $S \neq \emptyset$. Define a function $g : S \to P(S)$ as $g(x) = \{x\}$ for each $x \in S$. Then g is injective since $g(x_1) = g(x_2)$ implies $\{x_1\} = \{x_2\}$ and this implies $x_1 = x_2$. Since g is injective, then $\#S \leq \#P(S)$.

To establish the strict inequality, we show that there is no bijection from S to P(S). ASSUME there is a bijection $f : S \to P(S)$. Then for each $x \in S$ we have $f(x) \in P(S)$. So either $x \in f(x)$ or $x \notin f(x)$. Define set $E \subseteq S$ as $E = \{x \in S \mid x \notin f(x)\}$. Since $E \subseteq S$ then $E \in P(S)$. Since f is onto P(S) then there is some $z \in S$ such that f(z) = E. We consider the location of z in relation to set E.

Theorem 4.31. Cantor's Theorem (I); continued.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof (continued). ... $E = \{x \in S \mid x \notin f(x)\}...$

If $z \in E$ then by the definition of set $E, z \notin f(z) = E$, a CONTRADICTION. If $z \notin E$ then by the definition of set $E, z \in E$, a CONTRADICTION. So the assumption that f is a bijection must be false, and there is no bijection mapping $S \to P(S)$. That is $S \notin P(S)$, so that we have #S < #P(S), as claimed.

Theorem 4.31. Cantor's Theorem (I); continued.

Theorem 4.31. Cantor's Theorem (I). Let S be a set with power set P(S). Then #S < #P(S).

Proof (continued). ... $E = \{x \in S \mid x \notin f(x)\}...$

If $z \in E$ then by the definition of set $E, z \notin f(z) = E$, a CONTRADICTION. If $z \notin E$ then by the definition of set $E, z \in E$, a CONTRADICTION. So the assumption that f is a bijection must be false, and there is no bijection mapping $S \to P(S)$. That is $S \notin P(S)$, so that we have #S < #P(S), as claimed.