Mathematical Reasoning

Chapter 4. Finite and Infinite Sets
4.2. Comparing Sets, Finite or Infinite—Proofs of Theorems

Introduction
to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Lemma 4.25
(2) Theorem 4.26
(3) Theorem 4.30
(4) Theorem 4.31. Cantor's Theorem (I).

Lemma 4.25

Lemma 4.25. If A is any set, then \varnothing is an injective function from \varnothing to A.
Proof. This result is true vacuously. First, notice that $\varnothing \subseteq \varnothing \times A$, as needed. Also,

$$
\text { if } x \in \varnothing \text { then }(x, y) \in \varnothing \text { for exactly one } y \in A
$$

is true vacuously (since the hypothesis is false; there are are no $x \in \varnothing$), so that \varnothing really is a function from \varnothing to A (see Definition 3.2).

Lemma 4.25

Lemma 4.25. If A is any set, then \varnothing is an injective function from \varnothing to A. Proof. This result is true vacuously. First, notice that $\varnothing \subseteq \varnothing \times A$, as needed. Also,

$$
\text { if } x \in \varnothing \text { then }(x, y) \in \varnothing \text { for exactly one } y \in A
$$

is true vacuously (since the hypothesis is false; there are are no $x \in \varnothing$), so that \varnothing really is a function from \varnothing to A (see Definition 3.2). For injectivity, we need to check the implication (see Definition 3.10):

$$
\text { if } x_{1}, x_{2} \in \varnothing \text { and } \varnothing\left(x_{1}\right)=\varnothing\left(x_{2}\right) \text { then } x_{1}=x_{2} .
$$

Again, this is vacuously true since the hypothesis is false (there are no $\left.x_{1}, x_{2} \in \varnothing\right)$. Therefore \varnothing is an injective function from \varnothing to A, as claimed.

Lemma 4.25

Lemma 4.25. If A is any set, then \varnothing is an injective function from \varnothing to A. Proof. This result is true vacuously. First, notice that $\varnothing \subseteq \varnothing \times A$, as needed. Also,

$$
\text { if } x \in \varnothing \text { then }(x, y) \in \varnothing \text { for exactly one } y \in A
$$

is true vacuously (since the hypothesis is false; there are are no $x \in \varnothing$), so that \varnothing really is a function from \varnothing to A (see Definition 3.2). For injectivity, we need to check the implication (see Definition 3.10):

$$
\text { if } x_{1}, x_{2} \in \varnothing \text { and } \varnothing\left(x_{1}\right)=\varnothing\left(x_{2}\right) \text { then } x_{1}=x_{2} \text {. }
$$

Again, this is vacuously true since the hypothesis is false (there are no $x_{1}, x_{2} \in \varnothing$). Therefore \varnothing is an injective function from \varnothing to A, as claimed.

Theorem 4.26

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let $\# A=m$ and $\# B=n$. Then there are bijections f and g such that $\mathbb{N}_{m} \xrightarrow{f} A$ and $\mathbb{N}_{n} \xrightarrow{g} B$.

Theorem 4.26

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let $\# A=m$ and $\# B=n$. Then there are bijections f and g such that $\mathbb{N}_{m} \xrightarrow{f} A$ and $\mathbb{N}_{n} \xrightarrow{g} B$.
(a) If $m \leq n$ then there is an injection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is an injection (by Theorem 3.24(a)), as claimed.

Theorem 4.26

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let $\# A=m$ and $\# B=n$. Then there are bijections f and g such that $\mathbb{N}_{m} \xrightarrow{f} A$ and $\mathbb{N}_{n} \xrightarrow{g} B$.
(a) If $m \leq n$ then there is an injection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is an injection (by Theorem 3.24(a)), as claimed.

Conversely, suppose there is an injection $h: A \rightarrow B$. Then the mapping $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is an injection (by Theorem 3.24(a)), so that $m \leq n$ by the contrapositive of Theorem 4.8(a).

Theorem 4.26

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof. Let $\# A=m$ and $\# B=n$. Then there are bijections f and g such that $\mathbb{N}_{m} \xrightarrow{f} A$ and $\mathbb{N}_{n} \xrightarrow{g} B$.
(a) If $m \leq n$ then there is an injection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the inclusion mapping of Example 3.3(a)). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is an injection (by Theorem 3.24(a)), as claimed.

Conversely, suppose there is an injection $h: A \rightarrow B$. Then the mapping $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is an injection (by Theorem 3.24(a)), so that $m \leq n$ by the contrapositive of Theorem 4.8(a).

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (b) If $m=n$ then there is an bijection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (b) If $m=n$ then there is an bijection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Conversely, suppose $A \approx B$ so that there is an bijection $h: A \rightarrow B$. Then the mapping $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is a bijection (by Theorem 3.24(c)), so that $m=n$ by the contrapositive of Theorem 4.8(c) (applied twice).

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (b) If $m=n$ then there is an bijection $j: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ (namely, the identity mapping). Then the mapping $g \circ j \circ f^{-1}: A \rightarrow B$ is a bijection (by Theorem 3.24(c)) so that $A \approx B$, as claimed.

Conversely, suppose $A \approx B$ so that there is an bijection $h: A \rightarrow B$. Then the mapping $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is a bijection (by Theorem 3.24(c)), so that $m=n$ by the contrapositive of Theorem 4.8(c) (applied twice).

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose $m<n$. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h: A \rightarrow B$. Then the map $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose $m<n$. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h: A \rightarrow B$. Then the map $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Second, suppose there is an injection but no bijection from A to B. Then by part (a) we have $\# A \leq \# B$. Since there is no bijection, then $A \not \approx B$ and so by the contrapositive of part (b) we have $\# A \neq \# B$. That is, $\# A<\# B$, as claimed.

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then
(a) $\# A \leq \# B \Leftrightarrow$ There is an injection from A to B,
(b) $\# A=\# B \Leftrightarrow A \approx B$, and
(c) $\# A<\# B \Leftrightarrow$ There is an injection but no bijection from A to B.

Proof (continued). (c) First suppose $m<n$. Then by part (a), there is an injection from A to B. ASSUME there is a bijection $h: A \rightarrow B$. Then the map $g^{-1} \circ h \circ f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ is a bijection (by Theorem 3.24(c)), but this CONTRADICTS Theorem 4.8(a). So the assumption is false, and there is no bijection from A to B, as claimed.

Second, suppose there is an injection but no bijection from A to B. Then by part (a) we have $\# A \leq \# B$. Since there is no bijection, then $A \not \approx B$ and so by the contrapositive of part (b) we have $\# A \neq \# B$. That is, $\# A<\# B$, as claimed.

Theorem 4.30

Theorem 4.30. Let A, B, and C be sets. Then
(a) $\# A<\# B<\# C \Rightarrow \# A<\# C$,
(b) $\# A<\# B \leq \# C \Rightarrow \# A<\# C$, and
(c) $\# A \leq \# B<\# C \Rightarrow \# A<\# C$.

Proof. (a) If $\# A<\# B<\# C$ then there is an injection $f: A \rightarrow B$ and there is an injection $g: B \rightarrow C$. By Theorem 3.24(a) the composition $g \circ f: A \rightarrow C$ is an injection and hence $\# A \leq \# C$.

Theorem 4.30

Theorem 4.30. Let A, B, and C be sets. Then
(a) $\# A<\# B<\# C \Rightarrow \# A<\# C$,
(b) $\# A<\# B \leq \# C \Rightarrow \# A<\# C$, and
(c) $\# A \leq \# B<\# C \Rightarrow \# A<\# C$.

Proof. (a) If $\# A<\# B<\# C$ then there is an injection $f: A \rightarrow B$ and there is an injection $g: B \rightarrow C$. By Theorem 3.24(a) the composition $g \circ f: A \rightarrow C$ is an injection and hence $\# A \leq \# C$.

ASSUME $A \approx C$. Then there is a bijection $h: C \rightarrow A$. Since $\# B<\# C$ then there is an injection $g: B \rightarrow C$. Then the composition $h \circ g: B \rightarrow A$ is injective by Theorem 3.24(a), so that $\# B \leq \# A$. But the hypothesis $\# A<\# B$ implies the weaker statement \#Aleq\#B, so that the Schröder-Bernstein Theorem (Theorem 4.28) then gives that $A \approx B$. But this CONTRADICTS the hypothesis that $\# A<\# B$. So the assumption that $A \approx C$ is false, and we must have $\# A<\# C$, as claimed.

Theorem 4.30

Theorem 4.30. Let A, B, and C be sets. Then
(a) $\# A<\# B<\# C \Rightarrow \# A<\# C$,
(b) $\# A<\# B \leq \# C \Rightarrow \# A<\# C$, and
(c) $\# A \leq \# B<\# C \Rightarrow \# A<\# C$.

Proof. (a) If $\# A<\# B<\# C$ then there is an injection $f: A \rightarrow B$ and there is an injection $g: B \rightarrow C$. By Theorem 3.24(a) the composition $g \circ f: A \rightarrow C$ is an injection and hence $\# A \leq \# C$.

ASSUME $A \approx C$. Then there is a bijection $h: C \rightarrow A$. Since $\# B<\# C$ then there is an injection $g: B \rightarrow C$. Then the composition $h \circ g: B \rightarrow A$ is injective by Theorem 3.24(a), so that $\# B \leq \# A$. But the hypothesis $\# A<\# B$ implies the weaker statement $\#$ Aleq\#B, so that the Schröder-Bernstein Theorem (Theorem 4.28) then gives that $A \approx B$. But this CONTRADICTS the hypothesis that $\# A<\# B$. So the assumption that $A \approx C$ is false, and we must have $\# A<\# C$, as claimed.

Theorem 4.31. Cantor's Theorem (I).

Theorem 4.31. Cantor's Theorem (I).
Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.
Proof. First, if $S=\varnothing$, then $P(S)=\{\varnothing\}$. So $\# S=0$ and $\# P(S)=1$ and the claim holds.

Theorem 4.31. Cantor's Theorem (I).

Theorem 4.31. Cantor's Theorem (I).

Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.
Proof. First, if $S=\varnothing$, then $P(S)=\{\varnothing\}$. So $\# S=0$ and $\# P(S)=1$ and the claim holds.

Next, suppose $S \neq \varnothing$. Define a function $g: S \rightarrow P(S)$ as $g(x)=\{x\}$ for each $x \in S$. Then g is injective since $g\left(x_{1}\right)=g\left(x_{2}\right)$ implies $\left\{x_{1}\right\}=\left\{x_{2}\right\}$ and this implies $x_{1}=x_{2}$. Since g is injective, then $\# S \leq \# P(S)$.

Theorem 4.31. Cantor's Theorem (I).

Theorem 4.31. Cantor's Theorem (I).

Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.
Proof. First, if $S=\varnothing$, then $P(S)=\{\varnothing\}$. So $\# S=0$ and $\# P(S)=1$ and the claim holds.

Next, suppose $S \neq \varnothing$. Define a function $g: S \rightarrow P(S)$ as $g(x)=\{x\}$ for each $x \in S$. Then g is injective since $g\left(x_{1}\right)=g\left(x_{2}\right)$ implies $\left\{x_{1}\right\}=\left\{x_{2}\right\}$ and this implies $x_{1}=x_{2}$. Since g is injective, then $\# S \leq \# P(S)$.

To establish the strict inequality, we show that there is no bijection from S to $P(S)$. ASSUME there is a bijection $f: S \rightarrow P(S)$. Then for each $x \in S$ we have $f(x) \in P(S)$. So either $x \in f(x)$ or $x \notin f(x)$. Define set $E \subseteq S$ as $E=\{x \in S \mid x \notin f(x)\}$. Since $E \subseteq S$ then $E \in P(S)$. Since f is onto $P(S)$ then there is some $z \in S$ such that $f(z)=E$. We consider the location of z in relation to set E.

Theorem 4.31. Cantor's Theorem (I).

Theorem 4.31. Cantor's Theorem (I).

Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.
Proof. First, if $S=\varnothing$, then $P(S)=\{\varnothing\}$. So $\# S=0$ and $\# P(S)=1$ and the claim holds.

Next, suppose $S \neq \varnothing$. Define a function $g: S \rightarrow P(S)$ as $g(x)=\{x\}$ for each $x \in S$. Then g is injective since $g\left(x_{1}\right)=g\left(x_{2}\right)$ implies $\left\{x_{1}\right\}=\left\{x_{2}\right\}$ and this implies $x_{1}=x_{2}$. Since g is injective, then $\# S \leq \# P(S)$.

To establish the strict inequality, we show that there is no bijection from S to $P(S)$. ASSUME there is a bijection $f: S \rightarrow P(S)$. Then for each $x \in S$ we have $f(x) \in P(S)$. So either $x \in f(x)$ or $x \notin f(x)$. Define set $E \subseteq S$ as $E=\{x \in S \mid x \notin f(x)\}$. Since $E \subseteq S$ then $E \in P(S)$. Since f is onto $P(S)$ then there is some $z \in S$ such that $f(z)=E$. We consider the location of z in relation to set E.

Theorem 4.31. Cantor's Theorem (I); continued.

Theorem 4.31. Cantor's Theorem (I).
Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.

Proof (continued). ... $E=\{x \in S \mid x \notin f(x)\} \ldots$
If $z \in E$ then by the definition of set $E, z \notin f(z)=E$, a CONTRADICTION. If $z \notin E$ then by the definition of set $E, z \in E$, a CONTRADICTION. So the assumption that f is a bijection must be false, and there is no bijection mapping $S \rightarrow P(S)$. That is $S \not \approx P(S)$, so that we have $\# S<\# P(S)$, as claimed.

Theorem 4.31. Cantor's Theorem (I); continued.

Theorem 4.31. Cantor's Theorem (I).
Let S be a set with power set $P(S)$. Then $\# S<\# P(S)$.

Proof (continued). ... $E=\{x \in S \mid x \notin f(x)\} \ldots$
If $z \in E$ then by the definition of set $E, z \notin f(z)=E$, a CONTRADICTION. If $z \notin E$ then by the definition of set $E, z \in E$, a CONTRADICTION. So the assumption that f is a bijection must be false, and there is no bijection mapping $S \rightarrow P(S)$. That is $S \not \approx P(S)$, so that we have $\# S<\# P(S)$, as claimed.

