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Lemma 4.25

Lemma 4.25

Lemma 4.25. If A is any set, then ∅ is an injective function from ∅ to A.

Proof. This result is true vacuously. First, notice that ∅ ⊆ ∅× A, as
needed. Also,

if x ∈ ∅ then (x , y) ∈ ∅ for exactly one y ∈ A

is true vacuously (since the hypothesis is false; there are are no x ∈ ∅), so
that ∅ really is a function from ∅ to A (see Definition 3.2).

For injectivity,
we need to check the implication (see Definition 3.10):

if x1, x2 ∈ ∅ and ∅(x1) = ∅(x2) then x1 = x2.

Again, this is vacuously true since the hypothesis is false (there are no
x1, x2 ∈ ∅). Therefore ∅ is an injective function from ∅ to A, as
claimed.
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Theorem 4.26

Theorem 4.26. Let A and B be finite sets. Then

(a) #A ≤ #B ⇔ There is an injection from A to B,

(b) #A = #B ⇔ A ≈ B, and

(c) #A < #B ⇔ There is an injection but no bijection from A
to B.

Proof. Let #A = m and #B = n. Then there are bijections f and g such

that Nm
f→ A and Nn

g→ B.

(a) If m ≤ n then there is an injection j : Nm → Nn (namely, the inclusion
mapping of Example 3.3(a)). Then the mapping g ◦ j ◦ f −1 : A → B is an
injection (by Theorem 3.24(a)), as claimed.

Conversely, suppose there is an injection h : A → B. Then the mapping
g−1 ◦ h ◦ f : Nm → Nn is an injection (by Theorem 3.24(a)), so that
m ≤ n by the contrapositive of Theorem 4.8(a).
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Theorem 4.26

Theorem 4.26 (continued 1)

Theorem 4.26. Let A and B be finite sets. Then

(a) #A ≤ #B ⇔ There is an injection from A to B,

(b) #A = #B ⇔ A ≈ B, and

(c) #A < #B ⇔ There is an injection but no bijection from A
to B.

Proof (continued). (b) If m = n then there is an bijection j : Nm → Nn

(namely, the identity mapping). Then the mapping g ◦ j ◦ f −1 : A → B is
a bijection (by Theorem 3.24(c)) so that A ≈ B, as claimed.

Conversely, suppose A ≈ B so that there is an bijection h : A → B. Then
the mapping g−1 ◦ h ◦ f : Nm → Nn is a bijection (by Theorem 3.24(c)), so
that m = n by the contrapositive of Theorem 4.8(c) (applied twice).
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Theorem 4.26

Theorem 4.26 (continued 2)

Theorem 4.26. Let A and B be finite sets. Then

(a) #A ≤ #B ⇔ There is an injection from A to B,

(b) #A = #B ⇔ A ≈ B, and

(c) #A < #B ⇔ There is an injection but no bijection from A
to B.

Proof (continued). (c) First suppose m < n. Then by part (a), there is
an injection from A to B. ASSUME there is a bijection h : A → B. Then
the map g−1 ◦ h ◦ f : Nm → Nn is a bijection (by Theorem 3.24(c)), but
this CONTRADICTS Theorem 4.8(a). So the assumption is false, and
there is no bijection from A to B, as claimed.

Second, suppose there is an injection but no bijection from A to B. Then
by part (a) we have #A ≤ #B. Since there is no bijection, then A 6≈ B
and so by the contrapositive of part (b) we have #A 6= #B. That is,
#A < #B, as claimed.
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Theorem 4.30

Theorem 4.30. Let A, B, and C be sets. Then

(a) #A < #B < #C ⇒ #A < #C ,

(b) #A < #B ≤ #C ⇒ #A < #C , and

(c) #A ≤ #B < #C ⇒ #A < #C .

Proof. (a) If #A < #B < #C then there is an injection f : A → B and
there is an injection g : B → C . By Theorem 3.24(a) the composition
g ◦ f : A → C is an injection and hence #A ≤ #C .

ASSUME A ≈ C . Then there is a bijection h : C → A. Since #B < #C
then there is an injection g : B → C . Then the composition h ◦ g : B → A
is injective by Theorem 3.24(a), so that #B ≤ #A. But the hypothesis
#A < #B implies the weaker statement #Aleq#B, so that the
Schröder-Bernstein Theorem (Theorem 4.28) then gives that A ≈ B. But
this CONTRADICTS the hypothesis that #A < #B. So the assumption
that A ≈ C is false, and we must have #A < #C , as claimed.
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Theorem 4.31. Cantor’s Theorem (I).

Theorem 4.31. Cantor’s Theorem (I).

Theorem 4.31. Cantor’s Theorem (I).
Let S be a set with power set P(S). Then #S < #P(S).

Proof. First, if S = ∅, then P(S) = {∅}. So #S = 0 and #P(S) = 1
and the claim holds.

Next, suppose S 6= ∅. Define a function g : S → P(S) as g(x) = {x} for
each x ∈ S . Then g is injective since g(x1) = g(x2) implies {x1} = {x2}
and this implies x1 = x2. Since g is injective, then #S ≤ #P(S).

To establish the strict inequality, we show that there is no bijection from S
to P(S). ASSUME there is a bijection f : S → P(S). Then for each x ∈ S
we have f (x) ∈ P(S). So either x ∈ f (x) or x 6∈ f (x). Define set E ⊆ S
as E = {x ∈ S | x 6∈ f (x)}. Since E ⊆ S then E ∈ P(S). Since f is onto
P(S) then there is some z ∈ S such that f (z) = E . We consider the
location of z in relation to set E .
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Theorem 4.31. Cantor’s Theorem (I).

Theorem 4.31. Cantor’s Theorem (I); continued.

Theorem 4.31. Cantor’s Theorem (I).
Let S be a set with power set P(S). Then #S < #P(S).

Proof (continued). . . .E = {x ∈ S | x 6∈ f (x)}. . .

If z ∈ E then by the definition of set E , z 6∈ f (z) = E , a
CONTRADICTION. If z 6∈ E then by the definition of set E , z ∈ E , a
CONTRADICTION. So the assumption that f is a bijection must be false,
and there is no bijection mapping S → P(S). That is S 6≈ P(S), so that
we have #S < #P(S), as claimed.
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