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Theorem 4.35

Theorem 4.35

Theorem 4.35. If A is finite and B is countable then AU B is countable.

Proof. First, by Corollary 4.16, if B is also finite then AU B is finite and
hence countable.

Now suppose that B is countably infinite. We can decompose AU B into
disjoint sets as AUB = (A— B)UB. Now A— B C A, so by Theorem
4.12(a) A— B is a finite set. So define finite set A’ = A — B. If we show
that A" U B is countable then we have UB is countable. Since A’ is finite,
then there is a bijection f : A — N, for some n > 0, and since B is
countably infinite then there is a bijection g : B — N. Define function

f:AUB — Nas
[ flx)  ifxed
h(X)_{ n+g(x) ifxeB.

(Notice that f is well defined since A" and B are disjoint.) We claim that
h is a bijection.
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Example 4.34

Example 4.34

Example 4.34. The set of integers Z is countably infinite.

Proof. We know that N is infinite by Theorem 4.13, and N C Z so by
Theorem 4.12(b) Z is infinite. Define f : N — Z as

n/2 if nis even

fln) = { —(n—1)/2 if nis odd.
First, if n1 and ny are even such that f(n1) = f(n2), then n1/2 = ny/2
and so n; = ny. If ny is even and ny is odd such that f(n1) = f(n2), then
m/2=—(np—1)/2 0or ng = —ny+ 1 or ny + ny = 1; but this cannot
happen since n1,n, € Nand so n; > 2 and np > 1. If n; and ny are odd
such that f(n1) = f(n2), then —(n; —1)/2 = —(n2 — 1)/2 and so
—ni+1=—ny+1orn =ny Thatis, f is an injection. Now for m € Z
with m > 0, we have 2m € N and f(2m) = m. For m € Z with m < 0, we
have —2m+1 € Nand f(—2m—1) = —((-2m+1)—1)/2 = m. That is,
f is an injection. So f : N — Z is a bijection, and hence N = Z; that is, Z
is countably infinite, as claimed. O

Mathematical Reasoning February 9, 2022 3/16

Theorem 4.35

Theorem 4.35 (continued 1)

Theorem 4.35. If A is finite and B is countable then AU B is countable.

Proof (continued). For surjectivity, let k € N. If 1 < k < n then

k = f(x) = h(x) for some x € A’ since f : A/ — N, is surjective. If

k > n+1then k =n+t for some t € N. Then k = m+ g(x) = h(x) for
some x € B since g : B — N is surjective.

For injectivity, let x;,xo € A" U B. We consider three cases.

Case 1. Suppose x1,x € A'. Then h(x1) = h(x2) implies f(x1) = f(x2)
and in turn this implies that x; = x2 since f is injective.
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Theorem 4.35 (continued 2)

Theorem 4.35. If A is finite and B is countable then AU B is countable.

Proof (continued).

Case 2. Suppose x1,x2 € B. Then h(x1) = h(x2) implies

n+g(x1) = n+ g(x2), or g(x1) = g(x2), and in turn this implies that
X1 = Xp since g is injective.

Case 3. Suppose x;nA’ and x, € B, so that x; # x. Then
h(x1) = f(x1) # n and h(x2) = n+ g(x2) > n+ 1, so that h(x1) # h(x2).
By Note 3.2.B, this means that h is injective in this case.

The three cases combine to show that h is injective. Therefore,
AUB=A"UB =N and AU B is countable, as claimed. ]

Mathematical Reasoning February 9, 2022 6 /16

Theorem 4.37 (continued)

Theorem 4.37. If A and B are countable sets then AU B is countable.

Proof (continued). Since the range of f is E and the range of g is E’,
then the range of fUg is EUE' =7Z. Thatis, fUg: AUB — Z and

rua={ ;09 fich

Since f and g are bijections onto E and E’, respectively, and ENE' = &,
then “it follows that” f Ug is a bijection. So AUB = A'UB ~ Z and
AU B is countably infinite, and the claim holds. O
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Theorem 4.37

Theorem 4.37

Theorem 4.37. If A and B are countable sets then AU B is countable.

Proof. We have AUB = (A— B)U B. By Theorem 4.36(a), A— B is
countable since A — B C A. Without loss of generality, we can assume
that A — B and B are both countably infinite, since otherwise Theorem
4.16 (when both are finite) and Theorem 4.35 (when exactly one is finite)
give the result.

Let set A be A” = A— B and notice that AU B = A'U B. The integers
are countably infinite by Theorem 4.34. The mapping n+ 2n of Z to the
set E of even integers is a bijection and so E is countably infinite. The
mapping n +— 2n — 1 of Z to the set E’ of odd integers is a bijection and
so E’ is countably infinite. Since A" and B are countably infinite, then
there are bijections A 1, E and B % E'. Now take the union of f and g
(as sets of ordered pairs; notice that the domains of f and g are disjoint so
that the union actually is a function), f U g.
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Theorem 4.39

Theorem 4.39

Theorem 4.39.
(a) N x N is countably infinite.
(b) If A and B are countable then A x B is countable.

Proof. (a) Define f : N x N by f(m, n) = 2™M3". By the Fundamental
Theorem of Arithmetic (the unique representation part), f is an injection.
Since different values of m € N yield different different value of f, then the
range of f is infinite so that f is a bijection to an infinite subset of N. A
subset of N is countable by Theorem 4.23(a), so f is a bijection from

N x N to a countably infinite set and hence N x N is countably infinite, as
claimed. O
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Theorem 4.39

Theorem 4.39

Theorem 4.39.
(a) N x N is countably infinite.
(b) If A and B are countable then A x B is countable.

Proof (continued). (b) he case where both A and B are finite then the
claim holds by Theorem 4.17. If A is finite, say A= {11, a,...,an}, and
B is countably infinite then

Ax B=({ai1} x B)U({a2} x B)U---U({an} x B).

Since {a;j} x B ~ B (as seen by the bijection (aj, b) — b) then each set
{ai} x B is countably infinite. The claim now holds by Corollary 4.38.
Finally, suppose that A and B are both countably infinite. Then there are
bijections f : A— N and g : B — N. Then the mapping from A x B to

N x N given by (a, b) — (f(a), g(b)) is a bijection (as is easily, but maybe
tediously, confirmed). So A x B ~ N x N and so, by part (a), Ax B is
countable as claimed. O
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Theorem 4.41. Cantor's Theorem (Il)

Theorem 4.41. Cantor’s Theorem (II)

Theorem 4.41. Cantor’s Theorem (lI).
The set of real numbers R is uncountable.

Proof. We argued in Example 4.5 that every open interval of real numbers
is equipotent with R. So we only need to shoe that an open interval is
uncountable; we consider / = {x e R |0 < x < 1}. ASSUME f :N — | is
a bijection. We use the unique decimal representation of the numbers in /
mentioned above. With the digits represented by double subscripted a's,
we then have

= 0.311312313314 .
= 0.321322323324 .
= 0.331332333334 .

= 0.341342343344 ce
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Theorem 4.40

Theorem 4.40

Theorem 4.40. The set of rational numbers Q is countable.

Proof. First write Q = Q1 U {0} UQ™, where Q" and Q~ denote the
sets of positive and negative rational numbers, respectively. Now

Q" ~ Q™, as seen by the bijection x — —x. We claim that every positive
rational number can be written in exactly one way in the form a/b where a
and b are positive integers with no common prime factors (this follows
from the Fundamental Theorem of Arithmetic; we are representing positive
rational numbers as quotients “in lowest terms”). With this notation, we
define f : Q7 — N x N as a/b s (a, b). This function is an injection (this
is where we need the positive rationals represented in lowest terms), so
QT ~ f(Q7") since f is a bijection with its range. By Theorem 4.39(a)

N x N is countable, and by Theorem 4.36(a) f(Q™) is countable. Hence
Q™ is countable and so is Q™. Now by Theorem 4.38,

Q=Q"uU{0} UQ is countable, as claimed. O
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Theorem 4.41. Cantor's Theorem (Il)

Theorem 4.41. Cantor's Theorem (1), continued

Theorem 4.41. Cantor’s Theorem (II).
The set of real numbers R is uncountable.

Proof (continued). So aj is the jth decimal digit of f(i). We again use
Cantor’s diagonalization method. Define real number
m = 0.mymomsm; ... by defining the ith decimal digit of m as

mi — 2 if ajj = ].,
e 1 if aji 7& 1.

Then m € | and for each i € N we have f(i) # m since (i) and m differ
in the ith decimal place. So m ¢ f(N) C I and f : N — [ is not surjective,
a CONTRADICTION. So the assumption that f : N — / is a bijection is
false and no such bijection exists. That is /, and hence R, is uncountable
as claimed. O
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Corollary 4.42

Corollary 4.42

Corollary 4.42. The set of irrational numbers is uncountable.

Proof. Let S be the set of irrational numbers, so that R=QUS. If S
were countable then R would also be countable by Theorem 4.37. But this

contradicts Cantor’s Theorem (I1) (Theorem 4.41). O
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Example 4.43 (continued)

Example 4.43. If A and B are distinct points in the xy-plane and not in
Q x Q, then A and B can be connected by a path that contains no points
in Q x Q.

Proof (continued). ASSUME that for every X € L we have
(QxQ)NPx # &. Then define f : L — Q x Q by assigning to each X € L
a point in (Q x Q) N Px. Notice from the geometry of the situation, if X
and Y are different points on L, then A and B are the only points shared
by the paths Px and Py; that is, Px and Py are different. So f is
injective by Note 3.2.B, and hence f is a bijection from L to a subset of
Q x Q so that L is equipotent with a subset of Q@ x Q. But L~ R so L is
uncountable (by Cantor's Theorem (Il), Theorem 4.41), by Theorem 4.40
and Theorem 4.39(b) Q x Q is countable, and by Theorem 4.36 a subset
of a countable set is countable. That is, we have uncountable L is
equipotent with a countable set, a CONTRADICTION. So the assumption
that every X € L yields a path from A to B contains a point in Q X Q is

false, and some Px contains no points in Q x Q, as claimed. O
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Example 4.43

Example 4.43

Example 4.43. This example gives a cute geometric result using an
argument based on cardinalities of sets. Since Q is countable by Theorem
4.10, the set Q x Q is countable (this follows by an argument similar to
that for Theorem 4.39 for N x N). In the Cartesian plane, Q x Q
corresponds to the points having rational coordinates. If A and B are
distinct points in the xy-plane and not in Q x @, then A and B can be
connected by a path that contains no points in Q x Q.

Proof. Let L denote the perpendicular
bisector of the line segment AB (see the
figure). Then L ~ R. For

each point X € L, let Px denote the
path AX U XB connecting Ato B. We 4
claim that some Px is a the path that
contains no points in Q x Q.

Py —AXUXB
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