## Mathematical Reasoning

## Chapter 4. Finite and Infinite Sets

4.3. Countable and Uncountable Sets-Proofs of Theorems


Introduction
to Mathematical
Structures and Proofs
Second Edition

## Table of contents

(1) Example 4.34
(2) Theorem 4.35
(3) Theorem 4.37
(4) Theorem 4.39
(5) Theorem 4.40
(6) Theorem 4.41. Cantor's Theorem (II)
(7) Corollary 4.42
(8) Example 4.43

## Example 4.34

Example 4.34. The set of integers $\mathbb{Z}$ is countably infinite.
Proof. We know that $\mathbb{N}$ is infinite by Theorem 4.13, and $\mathbb{N} \subset \mathbb{Z}$ so by Theorem 4.12(b) $\mathbb{Z}$ is infinite. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ as

$$
f(n)=\left\{\begin{array}{cl}
n / 2 & \text { if } n \text { is even } \\
-(n-1) / 2 & \text { if } n \text { is odd. }
\end{array}\right.
$$

First, if $n_{1}$ and $n_{2}$ are even such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=n_{2} / 2$ and so $n_{1}=n_{2}$. If $n_{1}$ is even and $n_{2}$ is odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=-\left(n_{2}-1\right) / 2$ or $n_{1}=-n_{2}+1$ or $n_{1}+n_{2}=1$; but this cannot happen since $n_{1}, n_{2} \in \mathbb{N}$ and so $n_{1} \geq 2$ and $n_{2} \geq 1$. If $n_{1}$ and $n_{2}$ are odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $-\left(n_{1}-1\right) / 2=-\left(n_{2}-1\right) / 2$ and so $-n_{1}+1=-n_{2}+1$ or $n_{1}=n_{2}$. That is, $f$ is an injection.

## Example 4.34

Example 4.34. The set of integers $\mathbb{Z}$ is countably infinite.
Proof. We know that $\mathbb{N}$ is infinite by Theorem 4.13 , and $\mathbb{N} \subset \mathbb{Z}$ so by Theorem 4.12(b) $\mathbb{Z}$ is infinite. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ as

$$
f(n)=\left\{\begin{array}{cl}
n / 2 & \text { if } n \text { is even } \\
-(n-1) / 2 & \text { if } n \text { is odd. }
\end{array}\right.
$$

First, if $n_{1}$ and $n_{2}$ are even such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=n_{2} / 2$ and so $n_{1}=n_{2}$. If $n_{1}$ is even and $n_{2}$ is odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=-\left(n_{2}-1\right) / 2$ or $n_{1}=-n_{2}+1$ or $n_{1}+n_{2}=1$; but this cannot happen since $n_{1}, n_{2} \in \mathbb{N}$ and so $n_{1} \geq 2$ and $n_{2} \geq 1$. If $n_{1}$ and $n_{2}$ are odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $-\left(n_{1}-1\right) / 2=-\left(n_{2}-1\right) / 2$ and so $-n_{1}+1=-n_{2}+1$ or $n_{1}=n_{2}$. That is, $f$ is an injection. Now for $m \in \mathbb{Z}$ with $m>0$, we have $2 m \in \mathbb{N}$ and $f(2 m)=m$. For $m \in \mathbb{Z}$ with $m \leq 0$, we have $-2 m+1 \in \mathbb{N}$ and $f(-2 m-1)=-((-2 m+1)-1) / 2=m$. That is, $f$ is an injection. So $f: \mathbb{N} \rightarrow \mathbb{Z}$ is a bijection, and hence $\mathbb{N} \approx \mathbb{Z}$; that is, $\mathbb{Z}$ is countably infinite, as claimed.

## Example 4.34

Example 4.34. The set of integers $\mathbb{Z}$ is countably infinite.
Proof. We know that $\mathbb{N}$ is infinite by Theorem 4.13, and $\mathbb{N} \subset \mathbb{Z}$ so by Theorem 4.12(b) $\mathbb{Z}$ is infinite. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ as

$$
f(n)=\left\{\begin{array}{cl}
n / 2 & \text { if } n \text { is even } \\
-(n-1) / 2 & \text { if } n \text { is odd. }
\end{array}\right.
$$

First, if $n_{1}$ and $n_{2}$ are even such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=n_{2} / 2$ and so $n_{1}=n_{2}$. If $n_{1}$ is even and $n_{2}$ is odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $n_{1} / 2=-\left(n_{2}-1\right) / 2$ or $n_{1}=-n_{2}+1$ or $n_{1}+n_{2}=1$; but this cannot happen since $n_{1}, n_{2} \in \mathbb{N}$ and so $n_{1} \geq 2$ and $n_{2} \geq 1$. If $n_{1}$ and $n_{2}$ are odd such that $f\left(n_{1}\right)=f\left(n_{2}\right)$, then $-\left(n_{1}-1\right) / 2=-\left(n_{2}-1\right) / 2$ and so $-n_{1}+1=-n_{2}+1$ or $n_{1}=n_{2}$. That is, $f$ is an injection. Now for $m \in \mathbb{Z}$ with $m>0$, we have $2 m \in \mathbb{N}$ and $f(2 m)=m$. For $m \in \mathbb{Z}$ with $m \leq 0$, we have $-2 m+1 \in \mathbb{N}$ and $f(-2 m-1)=-((-2 m+1)-1) / 2=m$. That is, $f$ is an injection. So $f: \mathbb{N} \rightarrow \mathbb{Z}$ is a bijection, and hence $\mathbb{N} \approx \mathbb{Z}$; that is, $\mathbb{Z}$ is countably infinite, as claimed.

## Theorem 4.35

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable. Proof. First, by Corollary 4.16, if $B$ is also finite then $A \cup B$ is finite and hence countable.

## Theorem 4.35

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.
Proof. First, by Corollary 4.16, if $B$ is also finite then $A \cup B$ is finite and hence countable.

Now suppose that $B$ is countably infinite. We can decompose $A \cup B$ into disjoint sets as $A \cup B=(A-B) \cup B$. Now $A-B \subset A$, so by Theorem 4.12(a) $A-B$ is a finite set. So define finite set $A^{\prime}=A-B$. If we show that $A^{\prime} \cup B$ is countable then we have $\cup B$ is countable.

## Theorem 4.35

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.
Proof. First, by Corollary 4.16, if $B$ is also finite then $A \cup B$ is finite and hence countable.

Now suppose that $B$ is countably infinite. We can decompose $A \cup B$ into disjoint sets as $A \cup B=(A-B) \cup B$. Now $A-B \subset A$, so by Theorem 4.12(a) $A-B$ is a finite set. So define finite set $A^{\prime}=A-B$. If we show that $A^{\prime} \cup B$ is countable then we have $\cup B$ is countable. Since $A^{\prime}$ is finite, then there is a bijection $f: A \rightarrow \mathbb{N}_{n}$ for some $n \geq 0$, and since $B$ is countably infinite then there is a bijection $g: B \rightarrow \mathbb{N}$. Define function $f: A^{\prime} \cup B \rightarrow \mathbb{N}$ as

$$
h(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in A^{\prime} \\
n+g(x) & \text { if } x \in B .
\end{array}\right.
$$

(Notice that $f$ is well defined since $A^{\prime}$ and $B$ are disjoint.) We claim that $h$ is a bijection.

## Theorem 4.35

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.
Proof. First, by Corollary 4.16, if $B$ is also finite then $A \cup B$ is finite and hence countable.

Now suppose that $B$ is countably infinite. We can decompose $A \cup B$ into disjoint sets as $A \cup B=(A-B) \cup B$. Now $A-B \subset A$, so by Theorem 4.12(a) $A-B$ is a finite set. So define finite set $A^{\prime}=A-B$. If we show that $A^{\prime} \cup B$ is countable then we have $\cup B$ is countable. Since $A^{\prime}$ is finite, then there is a bijection $f: A \rightarrow \mathbb{N}_{n}$ for some $n \geq 0$, and since $B$ is countably infinite then there is a bijection $g: B \rightarrow \mathbb{N}$. Define function $f: A^{\prime} \cup B \rightarrow \mathbb{N}$ as

$$
h(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in A^{\prime} \\
n+g(x) & \text { if } x \in B .
\end{array}\right.
$$

(Notice that $f$ is well defined since $A^{\prime}$ and $B$ are disjoint.) We claim that $h$ is a bijection.

## Theorem 4.35 (continued 1)

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.

Proof (continued). For surjectivity, let $k \in \mathbb{N}$. If $1 \leq k \leq n$ then $k=f(x)=h(x)$ for some $x \in A^{\prime}$ since $f: A^{\prime} \rightarrow \mathbb{N}_{n}$ is surjective. If $k \geq n+1$ then $k=n+t$ for some $t \in \mathbb{N}$. Then $k=m+g(x)=h(x)$ for some $x \in B$ since $g: B \rightarrow \mathbb{N}$ is surjective.

## Theorem 4.35 (continued 1)

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.

Proof (continued). For surjectivity, let $k \in \mathbb{N}$. If $1 \leq k \leq n$ then $k=f(x)=h(x)$ for some $x \in A^{\prime}$ since $f: A^{\prime} \rightarrow \mathbb{N}_{n}$ is surjective. If $k \geq n+1$ then $k=n+t$ for some $t \in \mathbb{N}$. Then $k=m+g(x)=h(x)$ for some $x \in B$ since $g: B \rightarrow \mathbb{N}$ is surjective.

For injectivity, let $x_{1}, x_{2} \in A^{\prime} \cup B$. We consider three cases.
Case 1. Suppose $x_{1}, x_{2} \in A^{\prime}$. Then $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $f\left(x_{1}\right)=f\left(x_{2}\right)$
and in turn this implies that $x_{1}=x_{2}$ since $f$ is injective.

## Theorem 4.35 (continued 1)

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.

Proof (continued). For surjectivity, let $k \in \mathbb{N}$. If $1 \leq k \leq n$ then $k=f(x)=h(x)$ for some $x \in A^{\prime}$ since $f: A^{\prime} \rightarrow \mathbb{N}_{n}$ is surjective. If $k \geq n+1$ then $k=n+t$ for some $t \in \mathbb{N}$. Then $k=m+g(x)=h(x)$ for some $x \in B$ since $g: B \rightarrow \mathbb{N}$ is surjective.

For injectivity, let $x_{1}, x_{2} \in A^{\prime} \cup B$. We consider three cases.
Case 1. Suppose $x_{1}, x_{2} \in A^{\prime}$. Then $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies $f\left(x_{1}\right)=f\left(x_{2}\right)$ and in turn this implies that $x_{1}=x_{2}$ since $f$ is injective.

## Theorem 4.35 (continued 2)

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.

## Proof (continued).

Case 2. Suppose $x_{1}, x_{2} \in B$. Then $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies
$n+g\left(x_{1}\right)=n+g\left(x_{2}\right)$, or $g\left(x_{1}\right)=g\left(x_{2}\right)$, and in turn this implies that $x_{1}=x_{2}$ since $g$ is injective.

Case 3. Suppose $x_{i} n A^{\prime}$ and $x_{2} \in B$, so that $x_{1} \neq x_{2}$. Then $h\left(x_{1}\right)=f\left(x_{1}\right) \neq n$ and $h\left(x_{2}\right)=n+g\left(x_{2}\right) \geq n+1$, so that $h\left(x_{1}\right) \neq h\left(x_{2}\right)$. By Note 3.2.B, this means that $h$ is injective in this case.

The three cases combine to show that $h$ is injective. Therefore, $A \cup B=A^{\prime} \cup B \approx \mathbb{N}$ and $A \cup B$ is countable, as claimed.

## Theorem 4.35 (continued 2)

Theorem 4.35. If $A$ is finite and $B$ is countable then $A \cup B$ is countable.

## Proof (continued).

Case 2. Suppose $x_{1}, x_{2} \in B$. Then $h\left(x_{1}\right)=h\left(x_{2}\right)$ implies
$n+g\left(x_{1}\right)=n+g\left(x_{2}\right)$, or $g\left(x_{1}\right)=g\left(x_{2}\right)$, and in turn this implies that $x_{1}=x_{2}$ since $g$ is injective.

Case 3. Suppose $x_{i} n A^{\prime}$ and $x_{2} \in B$, so that $x_{1} \neq x_{2}$. Then $h\left(x_{1}\right)=f\left(x_{1}\right) \neq n$ and $h\left(x_{2}\right)=n+g\left(x_{2}\right) \geq n+1$, so that $h\left(x_{1}\right) \neq h\left(x_{2}\right)$. By Note 3.2.B, this means that $h$ is injective in this case.

The three cases combine to show that $h$ is injective. Therefore, $A \cup B=A^{\prime} \cup B \approx \mathbb{N}$ and $A \cup B$ is countable, as claimed.

## Theorem 4.37

Theorem 4.37. If $A$ and $B$ are countable sets then $A \cup B$ is countable. Proof. We have $A \cup B=(A-B) \cup B$. By Theorem 4.36(a), $A-B$ is countable since $A-B \subseteq A$. Without loss of generality, we can assume that $A-B$ and $B$ are both countably infinite, since otherwise Theorem 4.16 (when both are finite) and Theorem 4.35 (when exactly one is finite) give the result.

## Theorem 4.37

Theorem 4.37. If $A$ and $B$ are countable sets then $A \cup B$ is countable. Proof. We have $A \cup B=(A-B) \cup B$. By Theorem 4.36(a), $A-B$ is countable since $A-B \subseteq A$. Without loss of generality, we can assume that $A-B$ and $B$ are both countably infinite, since otherwise Theorem 4.16 (when both are finite) and Theorem 4.35 (when exactly one is finite) give the result.

Let set $A^{\prime}$ be $A^{\prime}=A-B$ and notice that $A \cup B=A^{\prime} \cup B$. The integers are countably infinite by Theorem 4.34. The mapping $n \mapsto 2 n$ of $\mathbb{Z}$ to the set $E$ of even integers is a bijection and so $E$ is countably infinite. The mapping $n \mapsto 2 n-1$ of $\mathbb{Z}$ to the set $E^{\prime}$ of odd integers is a bijection and so $E^{\prime}$ is countably infinite. Since $A^{\prime}$ and $B$ are countably infinite, then there are bijections $A \xrightarrow{f} E$ and $B \xrightarrow{g} E^{\prime}$. Now take the union of $f$ and $g$ (as sets of ordered pairs; notice that the domains of $f$ and $g$ are disjoint so that the union actually is a function), $f \cup g$.

## Theorem 4.37

Theorem 4.37. If $A$ and $B$ are countable sets then $A \cup B$ is countable. Proof. We have $A \cup B=(A-B) \cup B$. By Theorem 4.36(a), $A-B$ is countable since $A-B \subseteq A$. Without loss of generality, we can assume that $A-B$ and $B$ are both countably infinite, since otherwise Theorem 4.16 (when both are finite) and Theorem 4.35 (when exactly one is finite) give the result.

Let set $A^{\prime}$ be $A^{\prime}=A-B$ and notice that $A \cup B=A^{\prime} \cup B$. The integers are countably infinite by Theorem 4.34. The mapping $n \mapsto 2 n$ of $\mathbb{Z}$ to the set $E$ of even integers is a bijection and so $E$ is countably infinite. The mapping $n \mapsto 2 n-1$ of $\mathbb{Z}$ to the set $E^{\prime}$ of odd integers is a bijection and so $E^{\prime}$ is countably infinite. Since $A^{\prime}$ and $B$ are countably infinite, then there are bijections $A \xrightarrow{f} E$ and $B \xrightarrow{g} E^{\prime}$. Now take the union of $f$ and $g$ (as sets of ordered pairs; notice that the domains of $f$ and $g$ are disjoint so that the union actually is a function), $f \cup g$.

## Theorem 4.37 (continued)

Theorem 4.37. If $A$ and $B$ are countable sets then $A \cup B$ is countable.

Proof (continued). Since the range of $f$ is $E$ and the range of $g$ is $E^{\prime}$, then the range of $f \cup g$ is $E \cup E^{\prime}=\mathbb{Z}$. That is, $f \cup g: A^{\prime} \cup B \rightarrow \mathbb{Z}$ and

$$
(f \cup g)(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}
$$

Since $f$ and $g$ are bijections onto $E$ and $E^{\prime}$, respectively, and $E \cap E^{\prime}=\varnothing$, then "it follows that" $f \cup g$ is a bijection. So $A \cup B=A^{\prime} \cup B \approx \mathbb{Z}$ and $A \cup B$ is countably infinite, and the claim holds.

## Theorem 4.39

Theorem 4.39.
(a) $\mathbb{N} \times \mathbb{N}$ is countably infinite.
(b) If $A$ and $B$ are countable then $A \times B$ is countable.

Proof. (a) Define $f: \mathbb{N} \times \mathbb{N}$ by $f(m, n)=2^{m} 3^{n}$. By the Fundamental Theorem of Arithmetic (the unique representation part), $f$ is an injection. Since different values of $m \in \mathbb{N}$ yield different different value of $f$, then the range of $f$ is infinite so that $f$ is a bijection to an infinite subset of $\mathbb{N}$. A subset of $\mathbb{N}$ is countable by Theorem 4.23(a), so $f$ is a bijection from $\mathbb{N} \times \mathbb{N}$ to a countably infinite set and hence $\mathbb{N} \times \mathbb{N}$ is countably infinite, as claimed.

## Theorem 4.39

Theorem 4.39.
(a) $\mathbb{N} \times \mathbb{N}$ is countably infinite.
(b) If $A$ and $B$ are countable then $A \times B$ is countable.

Proof. (a) Define $f: \mathbb{N} \times \mathbb{N}$ by $f(m, n)=2^{m} 3^{n}$. By the Fundamental Theorem of Arithmetic (the unique representation part), $f$ is an injection. Since different values of $m \in \mathbb{N}$ yield different different value of $f$, then the range of $f$ is infinite so that $f$ is a bijection to an infinite subset of $\mathbb{N}$. A subset of $\mathbb{N}$ is countable by Theorem 4.23(a), so $f$ is a bijection from $\mathbb{N} \times \mathbb{N}$ to a countably infinite set and hence $\mathbb{N} \times \mathbb{N}$ is countably infinite, as claimed.

## Theorem 4.39

Theorem 4.39.
(a) $\mathbb{N} \times \mathbb{N}$ is countably infinite.
(b) If $A$ and $B$ are countable then $A \times B$ is countable.

Proof (continued). (b) he case where both $A$ and $B$ are finite then the claim holds by Theorem 4.17. If $A$ is finite, say $A=\left\{1_{1}, a_{2}, \ldots, a_{n}\right\}$, and $B$ is countably infinite then

$$
A \times B=\left(\left\{a_{1}\right\} \times B\right) \cup\left(\left\{a_{2}\right\} \times B\right) \cup \cdots \cup\left(\left\{a_{n}\right\} \times B\right) .
$$

Since $\left\{a_{i}\right\} \times B \approx B$ (as seen by the bijection $\left.\left(a_{i}, b\right) \mapsto b\right)$ then each set $\left\{a_{i}\right\} \times B$ is countably infinite. The claim now holds by Corollary 4.38. Finally, suppose that $A$ and $B$ are both countably infinite. Then there are bijections $f: A \rightarrow \mathbb{N}$ and $g: B \rightarrow \mathbb{N}$. Then the mapping from $A \times B$ to $\mathbb{N} \times \mathbb{N}$ given by $(a, b) \mapsto(f(a), g(b))$ is a bijection (as is easily, but maybe tediously, confirmed). So $A \times B \approx \mathbb{N} \times \mathbb{N}$ and so, by part (a), $A \times B$ is countable as claimed.

## Theorem 4.40

Theorem 4.40. The set of rational numbers $\mathbb{Q}$ is countable.
Proof. First write $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$, where $\mathbb{Q}^{+}$and $\mathbb{Q}^{-}$denote the sets of positive and negative rational numbers, respectively. Now $\mathbb{Q}^{+} \approx \mathbb{Q}^{-}$, as seen by the bijection $x \mapsto-x$.

## Theorem 4.40

Theorem 4.40. The set of rational numbers $\mathbb{Q}$ is countable.
Proof. First write $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$, where $\mathbb{Q}^{+}$and $\mathbb{Q}^{-}$denote the sets of positive and negative rational numbers, respectively. Now $\mathbb{Q}^{+} \approx \mathbb{Q}^{-}$, as seen by the bijection $x \mapsto-x$. We claim that every positive rational number can be written in exactly one way in the form $a / b$ where $a$ and $b$ are positive integers with no common prime factors (this follows from the Fundamental Theorem of Arithmetic; we are representing positive rational numbers as quotients "in lowest terms"). With this notation, we define $f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N}$ as $a / b \mapsto(a, b)$. This function is an injection (this is where we need the positive rationals represented in lowest terms), so $\mathbb{Q}^{+} \approx f\left(\mathbb{Q}^{+}\right)$since $f$ is a bijection with its range.

## Theorem 4.40

Theorem 4.40. The set of rational numbers $\mathbb{Q}$ is countable.
Proof. First write $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$, where $\mathbb{Q}^{+}$and $\mathbb{Q}^{-}$denote the sets of positive and negative rational numbers, respectively. Now $\mathbb{Q}^{+} \approx \mathbb{Q}^{-}$, as seen by the bijection $x \mapsto-x$. We claim that every positive rational number can be written in exactly one way in the form $a / b$ where $a$ and $b$ are positive integers with no common prime factors (this follows from the Fundamental Theorem of Arithmetic; we are representing positive rational numbers as quotients "in lowest terms"). With this notation, we define $f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N}$ as $a / b \mapsto(a, b)$. This function is an injection (this is where we need the positive rationals represented in lowest terms), so $\mathbb{Q}^{+} \approx f\left(\mathbb{Q}^{+}\right)$since $f$ is a bijection with its range. By Theorem 4.39(a) $\mathbb{N} \times \mathbb{N}$ is countable, and by Theorem 4.36(a) $f\left(\mathbb{Q}^{+}\right)$is countable. Hence $\mathbb{Q}^{+}$is countable and so is $\mathbb{Q}^{-}$. Now by Theorem 4.38, $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$is countable, as claimed.

## Theorem 4.40

Theorem 4.40. The set of rational numbers $\mathbb{Q}$ is countable.
Proof. First write $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$, where $\mathbb{Q}^{+}$and $\mathbb{Q}^{-}$denote the sets of positive and negative rational numbers, respectively. Now $\mathbb{Q}^{+} \approx \mathbb{Q}^{-}$, as seen by the bijection $x \mapsto-x$. We claim that every positive rational number can be written in exactly one way in the form $a / b$ where $a$ and $b$ are positive integers with no common prime factors (this follows from the Fundamental Theorem of Arithmetic; we are representing positive rational numbers as quotients "in lowest terms"). With this notation, we define $f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N}$ as $a / b \mapsto(a, b)$. This function is an injection (this is where we need the positive rationals represented in lowest terms), so $\mathbb{Q}^{+} \approx f\left(\mathbb{Q}^{+}\right)$since $f$ is a bijection with its range. By Theorem 4.39(a) $\mathbb{N} \times \mathbb{N}$ is countable, and by Theorem 4.36(a) $f\left(\mathbb{Q}^{+}\right)$is countable. Hence $\mathbb{Q}^{+}$is countable and so is $\mathbb{Q}^{-}$. Now by Theorem 4.38, $\mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-}$is countable, as claimed.

## Theorem 4.41. Cantor's Theorem (II)

## Theorem 4.41. Cantor's Theorem (II).

The set of real numbers $\mathbb{R}$ is uncountable.
Proof. We argued in Example 4.5 that every open interval of real numbers is equipotent with $\mathbb{R}$. So we only need to shoe that an open interval is uncountable; we consider $I=\{x \in \mathbb{R} \mid 0<x<1\}$. ASSUME $f: \mathbb{N} \rightarrow I$ is a bijection. We use the unique decimal representation of the numbers in $I$ mentioned above. With the digits represented by double subscripted a's, we then have

$$
\begin{aligned}
& f(1)=0 . a_{11} a_{12} a_{13} a_{14} \cdots \\
& f(2)=0 . a_{21} a_{22} a_{23} a_{24} \cdots \\
& f(3)=0 . a_{31} a_{32} a_{33} a_{34} \cdots \\
& f(4)=0 . a_{41} a_{42} a_{43} a_{44} \cdots
\end{aligned}
$$

## Theorem 4.41. Cantor's Theorem (II)

## Theorem 4.41. Cantor's Theorem (II).

The set of real numbers $\mathbb{R}$ is uncountable.
Proof. We argued in Example 4.5 that every open interval of real numbers is equipotent with $\mathbb{R}$. So we only need to shoe that an open interval is uncountable; we consider $I=\{x \in \mathbb{R} \mid 0<x<1\}$. ASSUME $f: \mathbb{N} \rightarrow I$ is a bijection. We use the unique decimal representation of the numbers in $I$ mentioned above. With the digits represented by double subscripted a's, we then have

$$
\begin{aligned}
f(1) & =0 . a_{11} a_{12} a_{13} a_{14} \ldots \\
f(2) & =0 . a_{21} a_{22} a_{23} a_{24} \ldots \\
f(3) & =0 . a_{31} a_{32} a_{33} a_{34} \ldots \\
f(4) & =0 . a_{41} a_{42} a_{43} a_{44} \ldots
\end{aligned}
$$

## Theorem 4.41. Cantor's Theorem (II), continued

Theorem 4.41. Cantor's Theorem (II).
The set of real numbers $\mathbb{R}$ is uncountable.
Proof (continued). So $a_{i j}$ is the $j$ th decimal digit of $f(i)$. We again use Cantor's diagonalization method. Define real number $m=0 . m_{1} m_{2} m_{3} m_{4} \ldots$ by defining the $i$ th decimal digit of $m$ as

$$
m_{i}= \begin{cases}2 & \text { if } a_{i i}=1 \\ 1 & \text { if } a_{i i} \neq 1\end{cases}
$$

Then $m \in I$ and for each $i \in \mathbb{N}$ we have $f(i) \neq m$ since $f(i)$ and $m$ differ in the $i$ th decimal place. So $m \notin f(\mathbb{N}) \subset I$ and $f: \mathbb{N} \rightarrow I$ is not surjective, a CONTRADICTION. So the assumption that $f: \mathbb{N} \rightarrow I$ is a bijection is false and no such bijection exists. That is $I$, and hence $\mathbb{R}$, is uncountable as claimed.

## Corollary 4.42

Corollary 4.42. The set of irrational numbers is uncountable.
 were countable then $\mathbb{R}$ would also be countable by Theorem 4.37 . But this contradicts Cantor's Theorem (II) (Theorem 4.41).

## Corollary 4.42

Corollary 4.42. The set of irrational numbers is uncountable.

Proof. Let $S$ be the set of irrational numbers, so that $\mathbb{R}=\mathbb{Q} \cup S$. If $S$ were countable then $\mathbb{R}$ would also be countable by Theorem 4.37. But this contradicts Cantor's Theorem (II) (Theorem 4.41).

## Example 4.43

Example 4.43. This example gives a cute geometric result using an argument based on cardinalities of sets. Since $\mathbb{Q}$ is countable by Theorem 4.10, the set $\mathbb{Q} \times \mathbb{Q}$ is countable (this follows by an argument similar to that for Theorem 4.39 for $\mathbb{N} \times \mathbb{N}$ ). In the Cartesian plane, $\mathbb{Q} \times \mathbb{Q}$ corresponds to the points having rational coordinates. If $A$ and $B$ are distinct points in the $x y$-plane and not in $\mathbb{Q} \times \mathbb{Q}$, then $A$ and $B$ can be connected by a path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.

## Proof. Let $L$ denote the perpendicular

 bisector of the line segment $A B$ (see the figure). Then $L \approx \mathbb{R}$. For
## Example 4.43

Example 4.43. This example gives a cute geometric result using an argument based on cardinalities of sets. Since $\mathbb{Q}$ is countable by Theorem 4.10 , the set $\mathbb{Q} \times \mathbb{Q}$ is countable (this follows by an argument similar to that for Theorem 4.39 for $\mathbb{N} \times \mathbb{N}$ ). In the Cartesian plane, $\mathbb{Q} \times \mathbb{Q}$ corresponds to the points having rational coordinates. If $A$ and $B$ are distinct points in the $x y$-plane and not in $\mathbb{Q} \times \mathbb{Q}$, then $A$ and $B$ can be connected by a path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.

Proof. Let $L$ denote the perpendicular bisector of the line segment $A B$ (see the figure). Then $L \approx \mathbb{R}$. For each point $X \in L$, let $P_{X}$ denote the path $A X \cup X B$ connecting $A$ to $B$. We claim that some $P_{X}$ is a the path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.


## Example 4.43

Example 4.43. This example gives a cute geometric result using an argument based on cardinalities of sets. Since $\mathbb{Q}$ is countable by Theorem 4.10 , the set $\mathbb{Q} \times \mathbb{Q}$ is countable (this follows by an argument similar to that for Theorem 4.39 for $\mathbb{N} \times \mathbb{N}$ ). In the Cartesian plane, $\mathbb{Q} \times \mathbb{Q}$ corresponds to the points having rational coordinates. If $A$ and $B$ are distinct points in the $x y$-plane and not in $\mathbb{Q} \times \mathbb{Q}$, then $A$ and $B$ can be connected by a path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.

Proof. Let $L$ denote the perpendicular bisector of the line segment $A B$ (see the figure). Then $L \approx \mathbb{R}$. For each point $X \in L$, let $P_{X}$ denote the path $A X \cup X B$ connecting $A$ to $B$. We claim that some $P_{X}$ is a the path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.


## Example 4.43 (continued)

Example 4.43. If $A$ and $B$ are distinct points in the $x y$-plane and not in $\mathbb{Q} \times \mathbb{Q}$, then $A$ and $B$ can be connected by a path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.
Proof (continued). ASSUME that for every $X \in L$ we have $(\mathbb{Q} \times \mathbb{Q}) \cap P_{X} \neq \varnothing$. Then define $f: L \rightarrow \mathbb{Q} \times \mathbb{Q}$ by assigning to each $X \in L$ a point in $(\mathbb{Q} \times \mathbb{Q}) \cap P_{X}$. Notice from the geometry of the situation, if $X$ and $Y$ are different points on $L$, then $A$ and $B$ are the only points shared by the paths $P_{X}$ and $P_{Y}$; that is, $P_{X}$ and $P_{Y}$ are different. So $f$ is injective by Note 3.2.B, and hence $f$ is a bijection from $L$ to a subset of $\mathbb{Q} \times \mathbb{Q}$ so that $L$ is equipotent with a subset of $\mathbb{Q} \times \mathbb{Q}$. But $L \approx \mathbb{R}$ so $L$ is uncountable (by Cantor's Theorem (II), Theorem 4.41), by Theorem 4.40 and Theorem 4.39 (b) $\mathbb{Q} \times \mathbb{Q}$ is countable, and by Theorem 4.36 a subset of a countable set is countable. That is, we have uncountable $L$ is equipotent with a countable set, a CONTRADICTION. So the assumption that every $X \in L$ yields a path from $A$ to $B$ contains a point in $\mathbb{Q} \times \mathbb{Q}$ is false, and some $P_{X}$ contains no points in $\mathbb{Q} \times \mathbb{Q}$, as claimed.

## Example 4.43 (continued)

Example 4.43. If $A$ and $B$ are distinct points in the $x y$-plane and not in $\mathbb{Q} \times \mathbb{Q}$, then $A$ and $B$ can be connected by a path that contains no points in $\mathbb{Q} \times \mathbb{Q}$.
Proof (continued). ASSUME that for every $X \in L$ we have $(\mathbb{Q} \times \mathbb{Q}) \cap P_{X} \neq \varnothing$. Then define $f: L \rightarrow \mathbb{Q} \times \mathbb{Q}$ by assigning to each $X \in L$ a point in $(\mathbb{Q} \times \mathbb{Q}) \cap P_{X}$. Notice from the geometry of the situation, if $X$ and $Y$ are different points on $L$, then $A$ and $B$ are the only points shared by the paths $P_{X}$ and $P_{Y}$; that is, $P_{X}$ and $P_{Y}$ are different. So $f$ is injective by Note 3.2.B, and hence $f$ is a bijection from $L$ to a subset of $\mathbb{Q} \times \mathbb{Q}$ so that $L$ is equipotent with a subset of $\mathbb{Q} \times \mathbb{Q}$. But $L \approx \mathbb{R}$ so $L$ is uncountable (by Cantor's Theorem (II), Theorem 4.41), by Theorem 4.40 and Theorem 4.39(b) $\mathbb{Q} \times \mathbb{Q}$ is countable, and by Theorem 4.36 a subset of a countable set is countable. That is, we have uncountable $L$ is equipotent with a countable set, a CONTRADICTION. So the assumption that every $X \in L$ yields a path from $A$ to $B$ contains a point in $\mathbb{Q} \times \mathbb{Q}$ is false, and some $P_{X}$ contains no points in $\mathbb{Q} \times \mathbb{Q}$, as claimed.

