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Example 4.34

Example 4.34

Example 4.34. The set of integers Z is countably infinite.

Proof. We know that N is infinite by Theorem 4.13, and N ⊂ Z so by
Theorem 4.12(b) Z is infinite. Define f : N → Z as

f (n) =

{
n/2 if n is even

−(n − 1)/2 if n is odd.

First, if n1 and n2 are even such that f (n1) = f (n2), then n1/2 = n2/2
and so n1 = n2. If n1 is even and n2 is odd such that f (n1) = f (n2), then
n1/2 = −(n2 − 1)/2 or n1 = −n2 + 1 or n1 + n2 = 1; but this cannot
happen since n1, n2 ∈ N and so n1 ≥ 2 and n2 ≥ 1. If n1 and n2 are odd
such that f (n1) = f (n2), then −(n1 − 1)/2 = −(n2 − 1)/2 and so
−n1 + 1 = −n2 + 1 or n1 = n2. That is, f is an injection.

Now for m ∈ Z
with m > 0, we have 2m ∈ N and f (2m) = m. For m ∈ Z with m ≤ 0, we
have −2m + 1 ∈ N and f (−2m− 1) = −((−2m + 1)− 1)/2 = m. That is,
f is an injection. So f : N → Z is a bijection, and hence N ≈ Z; that is, Z
is countably infinite, as claimed.

() Mathematical Reasoning February 9, 2022 3 / 16



Example 4.34

Example 4.34

Example 4.34. The set of integers Z is countably infinite.

Proof. We know that N is infinite by Theorem 4.13, and N ⊂ Z so by
Theorem 4.12(b) Z is infinite. Define f : N → Z as

f (n) =

{
n/2 if n is even

−(n − 1)/2 if n is odd.

First, if n1 and n2 are even such that f (n1) = f (n2), then n1/2 = n2/2
and so n1 = n2. If n1 is even and n2 is odd such that f (n1) = f (n2), then
n1/2 = −(n2 − 1)/2 or n1 = −n2 + 1 or n1 + n2 = 1; but this cannot
happen since n1, n2 ∈ N and so n1 ≥ 2 and n2 ≥ 1. If n1 and n2 are odd
such that f (n1) = f (n2), then −(n1 − 1)/2 = −(n2 − 1)/2 and so
−n1 + 1 = −n2 + 1 or n1 = n2. That is, f is an injection. Now for m ∈ Z
with m > 0, we have 2m ∈ N and f (2m) = m. For m ∈ Z with m ≤ 0, we
have −2m + 1 ∈ N and f (−2m− 1) = −((−2m + 1)− 1)/2 = m. That is,
f is an injection. So f : N → Z is a bijection, and hence N ≈ Z; that is, Z
is countably infinite, as claimed.

() Mathematical Reasoning February 9, 2022 3 / 16



Example 4.34

Example 4.34

Example 4.34. The set of integers Z is countably infinite.

Proof. We know that N is infinite by Theorem 4.13, and N ⊂ Z so by
Theorem 4.12(b) Z is infinite. Define f : N → Z as

f (n) =

{
n/2 if n is even

−(n − 1)/2 if n is odd.

First, if n1 and n2 are even such that f (n1) = f (n2), then n1/2 = n2/2
and so n1 = n2. If n1 is even and n2 is odd such that f (n1) = f (n2), then
n1/2 = −(n2 − 1)/2 or n1 = −n2 + 1 or n1 + n2 = 1; but this cannot
happen since n1, n2 ∈ N and so n1 ≥ 2 and n2 ≥ 1. If n1 and n2 are odd
such that f (n1) = f (n2), then −(n1 − 1)/2 = −(n2 − 1)/2 and so
−n1 + 1 = −n2 + 1 or n1 = n2. That is, f is an injection. Now for m ∈ Z
with m > 0, we have 2m ∈ N and f (2m) = m. For m ∈ Z with m ≤ 0, we
have −2m + 1 ∈ N and f (−2m− 1) = −((−2m + 1)− 1)/2 = m. That is,
f is an injection. So f : N → Z is a bijection, and hence N ≈ Z; that is, Z
is countably infinite, as claimed.

() Mathematical Reasoning February 9, 2022 3 / 16



Theorem 4.35

Theorem 4.35

Theorem 4.35. If A is finite and B is countable then A ∪ B is countable.

Proof. First, by Corollary 4.16, if B is also finite then A ∪ B is finite and
hence countable.

Now suppose that B is countably infinite. We can decompose A ∪ B into
disjoint sets as A ∪ B = (A− B) ∪ B. Now A− B ⊂ A, so by Theorem
4.12(a) A− B is a finite set. So define finite set A′ = A− B. If we show
that A′ ∪ B is countable then we have ∪B is countable. Since A′ is finite,
then there is a bijection f : A → Nn for some n ≥ 0, and since B is
countably infinite then there is a bijection g : B → N. Define function
f : A′ ∪ B → N as

h(x) =

{
f (x) if x ∈ A′

n + g(x) if x ∈ B.

(Notice that f is well defined since A′ and B are disjoint.) We claim that
h is a bijection.
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Theorem 4.35

Theorem 4.35 (continued 1)

Theorem 4.35. If A is finite and B is countable then A ∪ B is countable.

Proof (continued). For surjectivity, let k ∈ N. If 1 ≤ k ≤ n then
k = f (x) = h(x) for some x ∈ A′ since f : A′ → Nn is surjective. If
k ≥ n + 1 then k = n + t for some t ∈ N. Then k = m + g(x) = h(x) for
some x ∈ B since g : B → N is surjective.

For injectivity, let x1, x2 ∈ A′ ∪ B. We consider three cases.

Case 1. Suppose x1, x2 ∈ A′. Then h(x1) = h(x2) implies f (x1) = f (x2)
and in turn this implies that x1 = x2 since f is injective.
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Theorem 4.35

Theorem 4.35 (continued 2)

Theorem 4.35. If A is finite and B is countable then A ∪ B is countable.

Proof (continued).
Case 2. Suppose x1, x2 ∈ B. Then h(x1) = h(x2) implies
n + g(x1) = n + g(x2), or g(x1) = g(x2), and in turn this implies that
x1 = x2 since g is injective.

Case 3. Suppose xinA′ and x2 ∈ B, so that x1 6= x2. Then
h(x1) = f (x1) 6= n and h(x2) = n + g(x2) ≥ n + 1, so that h(x1) 6= h(x2).
By Note 3.2.B, this means that h is injective in this case.

The three cases combine to show that h is injective. Therefore,
A ∪ B = A′ ∪ B ≈ N and A ∪ B is countable, as claimed.
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Theorem 4.37

Theorem 4.37

Theorem 4.37. If A and B are countable sets then A ∪ B is countable.

Proof. We have A ∪ B = (A− B) ∪ B. By Theorem 4.36(a), A− B is
countable since A− B ⊆ A. Without loss of generality, we can assume
that A− B and B are both countably infinite, since otherwise Theorem
4.16 (when both are finite) and Theorem 4.35 (when exactly one is finite)
give the result.

Let set A′ be A′ = A− B and notice that A ∪ B = A′ ∪ B. The integers
are countably infinite by Theorem 4.34. The mapping n 7→ 2n of Z to the
set E of even integers is a bijection and so E is countably infinite. The
mapping n 7→ 2n − 1 of Z to the set E ′ of odd integers is a bijection and
so E ′ is countably infinite. Since A′ and B are countably infinite, then

there are bijections A
f→ E and B

g→ E ′. Now take the union of f and g
(as sets of ordered pairs; notice that the domains of f and g are disjoint so
that the union actually is a function), f ∪ g .
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Theorem 4.37

Theorem 4.37 (continued)

Theorem 4.37. If A and B are countable sets then A ∪ B is countable.

Proof (continued). Since the range of f is E and the range of g is E ′,
then the range of f ∪ g is E ∪ E ′ = Z. That is, f ∪ g : A′ ∪ B → Z and

(f ∪ g)(x) =

{
f (x) if x ∈ A
g(x) if x ∈ B.

Since f and g are bijections onto E and E ′, respectively, and E ∩ E ′ = ∅,
then “it follows that” f ∪ g is a bijection. So A ∪ B = A′ ∪ B ≈ Z and
A ∪ B is countably infinite, and the claim holds.
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Theorem 4.39

Theorem 4.39

Theorem 4.39.

(a) N× N is countably infinite.

(b) If A and B are countable then A× B is countable.

Proof. (a) Define f : N× N by f (m, n) = 2m3n. By the Fundamental
Theorem of Arithmetic (the unique representation part), f is an injection.
Since different values of m ∈ N yield different different value of f , then the
range of f is infinite so that f is a bijection to an infinite subset of N. A
subset of N is countable by Theorem 4.23(a), so f is a bijection from
N× N to a countably infinite set and hence N× N is countably infinite, as
claimed.

() Mathematical Reasoning February 9, 2022 9 / 16



Theorem 4.39

Theorem 4.39

Theorem 4.39.

(a) N× N is countably infinite.

(b) If A and B are countable then A× B is countable.

Proof. (a) Define f : N× N by f (m, n) = 2m3n. By the Fundamental
Theorem of Arithmetic (the unique representation part), f is an injection.
Since different values of m ∈ N yield different different value of f , then the
range of f is infinite so that f is a bijection to an infinite subset of N. A
subset of N is countable by Theorem 4.23(a), so f is a bijection from
N× N to a countably infinite set and hence N× N is countably infinite, as
claimed.

() Mathematical Reasoning February 9, 2022 9 / 16



Theorem 4.39

Theorem 4.39

Theorem 4.39.

(a) N× N is countably infinite.

(b) If A and B are countable then A× B is countable.

Proof (continued). (b) he case where both A and B are finite then the
claim holds by Theorem 4.17. If A is finite, say A = {11, a2, . . . , an}, and
B is countably infinite then

A× B = ({a1} × B) ∪ ({a2} × B) ∪ · · · ∪ ({an} × B).

Since {ai} × B ≈ B (as seen by the bijection (ai , b) 7→ b) then each set
{ai} × B is countably infinite. The claim now holds by Corollary 4.38.
Finally, suppose that A and B are both countably infinite. Then there are
bijections f : A → N and g : B → N. Then the mapping from A× B to
N× N given by (a, b) 7→ (f (a), g(b)) is a bijection (as is easily, but maybe
tediously, confirmed). So A× B ≈ N× N and so, by part (a), A× B is
countable as claimed.

() Mathematical Reasoning February 9, 2022 10 / 16



Theorem 4.40

Theorem 4.40

Theorem 4.40. The set of rational numbers Q is countable.

Proof. First write Q = Q+ ∪ {0} ∪Q−, where Q+ and Q− denote the
sets of positive and negative rational numbers, respectively. Now
Q+ ≈ Q−, as seen by the bijection x 7→ −x .

We claim that every positive
rational number can be written in exactly one way in the form a/b where a
and b are positive integers with no common prime factors (this follows
from the Fundamental Theorem of Arithmetic; we are representing positive
rational numbers as quotients “in lowest terms”). With this notation, we
define f : Q+ → N×N as a/b 7→ (a, b). This function is an injection (this
is where we need the positive rationals represented in lowest terms), so
Q+ ≈ f (Q+) since f is a bijection with its range. By Theorem 4.39(a)
N× N is countable, and by Theorem 4.36(a) f (Q+) is countable. Hence
Q+ is countable and so is Q−. Now by Theorem 4.38,
Q = Q+ ∪ {0} ∪Q− is countable, as claimed.
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Theorem 4.41. Cantor’s Theorem (II)

Theorem 4.41. Cantor’s Theorem (II)

Theorem 4.41. Cantor’s Theorem (II).
The set of real numbers R is uncountable.

Proof. We argued in Example 4.5 that every open interval of real numbers
is equipotent with R. So we only need to shoe that an open interval is
uncountable; we consider I = {x ∈ R | 0 < x < 1}. ASSUME f : N → I is
a bijection. We use the unique decimal representation of the numbers in I
mentioned above. With the digits represented by double subscripted a’s,
we then have

f (1) = 0.a11a12a13a14 . . .

f (2) = 0.a21a22a23a24 . . .

f (3) = 0.a31a32a33a34 . . .

f (4) = 0.a41a42a43a44 . . .
...
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Theorem 4.41. Cantor’s Theorem (II)

Theorem 4.41. Cantor’s Theorem (II), continued

Theorem 4.41. Cantor’s Theorem (II).
The set of real numbers R is uncountable.

Proof (continued). So aij is the jth decimal digit of f (i). We again use
Cantor’s diagonalization method. Define real number
m = 0.m1m2m3m4 . . . by defining the ith decimal digit of m as

mi =

{
2 if aii = 1,
1 if aii 6= 1.

Then m ∈ I and for each i ∈ N we have f (i) 6= m since f (i) and m differ
in the ith decimal place. So m 6∈ f (N) ⊂ I and f : N → I is not surjective,
a CONTRADICTION. So the assumption that f : N → I is a bijection is
false and no such bijection exists. That is I , and hence R, is uncountable
as claimed.
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Corollary 4.42

Corollary 4.42

Corollary 4.42. The set of irrational numbers is uncountable.

Proof. Let S be the set of irrational numbers, so that R = Q ∪ S . If S
were countable then R would also be countable by Theorem 4.37. But this
contradicts Cantor’s Theorem (II) (Theorem 4.41).
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Example 4.43

Example 4.43

Example 4.43. This example gives a cute geometric result using an
argument based on cardinalities of sets. Since Q is countable by Theorem
4.10, the set Q×Q is countable (this follows by an argument similar to
that for Theorem 4.39 for N× N). In the Cartesian plane, Q×Q
corresponds to the points having rational coordinates. If A and B are
distinct points in the xy -plane and not in Q×Q, then A and B can be
connected by a path that contains no points in Q×Q.

Proof. Let L denote the perpendicular
bisector of the line segment AB (see the
figure). Then L ≈ R. For
each point X ∈ L, let PX denote the
path AX ∪ XB connecting A to B. We
claim that some PX is a the path that
contains no points in Q×Q.
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Example 4.43 (continued)

Example 4.43. If A and B are distinct points in the xy -plane and not in
Q×Q, then A and B can be connected by a path that contains no points
in Q×Q.

Proof (continued). ASSUME that for every X ∈ L we have
(Q×Q)∩PX 6= ∅. Then define f : L → Q×Q by assigning to each X ∈ L
a point in (Q×Q) ∩ PX . Notice from the geometry of the situation, if X
and Y are different points on L, then A and B are the only points shared
by the paths PX and PY ; that is, PX and PY are different. So f is
injective by Note 3.2.B, and hence f is a bijection from L to a subset of
Q×Q so that L is equipotent with a subset of Q×Q. But L ≈ R so L is
uncountable (by Cantor’s Theorem (II), Theorem 4.41), by Theorem 4.40
and Theorem 4.39(b) Q×Q is countable, and by Theorem 4.36 a subset
of a countable set is countable. That is, we have uncountable L is
equipotent with a countable set, a CONTRADICTION. So the assumption
that every X ∈ L yields a path from A to B contains a point in Q×Q is
false, and some PX contains no points in Q×Q, as claimed.
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