Mathematical Reasoning

Chapter 6. Number Theory

6.1. Operations—Proofs of Theorems

Mathematical Reasoning

February 14, 2022 1 / 4

Mathematical Reasoning

February 14, 2022 3 / 4

Theorem 6.6

Theorem 6.6. Suppose * is an associative operation on S with identity e. If an element $a \in S$ has an inverse, then it has only one inverse.

Solution. Suppose element a has more than one inverse, say b and c. Then

b = b * e since e is the identity

= b*(a*c) because a*c=e since c is an inverse of a

(b*a)*c by associativity

= e * c because b * a = e since b is an inverse of a

= c since e is the identity.

So b = c and any two inverses of a are equal. That is, a has only one inverse, as claimed.

Mathematical Reasoning

February 14, 2022 4 / 4

Theorem 6.4

Theorem 6.4. An operation has at most one identity.

Proof. Suppose binary operation * has more than one identity, say e and e_1 are identities. Then $e*e_1=e_1$ since e is an identity. Also, $e*e_1=e$ since e_1 is an identity. Therefore, $e_1 = e * e_1 = e$ and so any two identities are actually equal. That is, * has at most one identity, as claimed.