Mathematical Reasoning

Chapter 6. Number Theory 6.1. Operations—Proofs of Theorems

()

Table of contents

Theorem 6.4. An operation has at most one identity.

Proof. Suppose binary operation * has more than one identity, say e and e_1 are identities. Then $e * e_1 = e_1$ since e is an identity. Also, $e * e_1 = e$ since e_1 is an identity. Therefore, $e_1 = e * e_1 = e$ and so any two identities are actually equal. That is, * has at most one identity, as claimed.

Theorem 6.4. An operation has at most one identity.

Proof. Suppose binary operation * has more than one identity, say e and e_1 are identities. Then $e * e_1 = e_1$ since e is an identity. Also, $e * e_1 = e$ since e_1 is an identity. Therefore, $e_1 = e * e_1 = e$ and so any two identities are actually equal. That is, * has at most one identity, as claimed.

Theorem 6.6

Theorem 6.6. Suppose * is an associative operation on S with identity e. If an element $a \in S$ has an inverse, then it has only one inverse.

Solution. Suppose element a has more than one inverse, say b and c. Then

- b = b * e since e is the identity
 - = b * (a * c) because a * c = e since c is an inverse of a
 - = (b * a) * c by associativity
 - = e * c because b * a = e since b is an inverse of a
 - = c since e is the identity.

So b = c and any two inverses of *a* are equal. That is, *a* has only one inverse, as claimed.

Theorem 6.6

Theorem 6.6. Suppose * is an associative operation on S with identity e. If an element $a \in S$ has an inverse, then it has only one inverse.

Solution. Suppose element a has more than one inverse, say b and c. Then

$$b = b * e$$
 since e is the identity

= b * (a * c) because a * c = e since c is an inverse of a

$$= (b * a) * c$$
 by associativity

= e * c because b * a = e since b is an inverse of a

So b = c and any two inverses of *a* are equal. That is, *a* has only one inverse, as claimed.