Mathematical Reasoning

Chapter 6. Number Theory

 6.1. Operations—Proofs of Theorems

Introduction
to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Theorem 6.4
(2) Theorem 6.6

Theorem 6.4

Theorem 6.4. An operation has at most one identity.

Proof. Suppose binary operation $*$ has more than one identity, say e and e_{1} are identities. Then $e * e_{1}=e_{1}$ since e is an identity. Also, $e * e_{1}=e$ since e_{1} is an identity. Therefore, $e_{1}=e * e_{1}=e$ and so any two identities are actually equal. That is, $*$ has at most one identity, as claimed.

Theorem 6.4

Theorem 6.4. An operation has at most one identity.

Proof. Suppose binary operation $*$ has more than one identity, say e and e_{1} are identities. Then $e * e_{1}=e_{1}$ since e is an identity. Also, $e * e_{1}=e$ since e_{1} is an identity. Therefore, $e_{1}=e * e_{1}=e$ and so any two identities are actually equal. That is, $*$ has at most one identity, as claimed.

Theorem 6.6

Theorem 6.6. Suppose $*$ is an associative operation on S with identity e. If an element $a \in S$ has an inverse, then it has only one inverse.

Solution. Suppose element a has more than one inverse, say b and c. Then

```
b}=b*e\mathrm{ since e is the identity
    =b*(a*c) because a*c=e sincec is an inverse of a
    =(b*a)*c by associativity
    = e*c because b*a=e since b is an inverse of a
    = c since e is the identity.
```

So $b=c$ and any two inverses of a are equal. That is, a has only one
inverse, as claimed.

Theorem 6.6

Theorem 6.6. Suppose $*$ is an associative operation on S with identity e. If an element $a \in S$ has an inverse, then it has only one inverse.

Solution. Suppose element a has more than one inverse, say b and c. Then

$$
\begin{aligned}
b & =b * e \text { since } e \text { is the identity } \\
& =b *(a * c) \text { because } a * c=e \text { since } c \text { is an inverse of } a \\
& =(b * a) * c \text { by associativity } \\
& =e * c \text { because } b * a=e \text { since } b \text { is an inverse of } a \\
& =c \text { since } e \text { is the identity. }
\end{aligned}
$$

So $b=c$ and any two inverses of a are equal. That is, a has only one inverse, as claimed.

