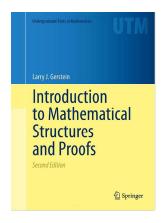
Mathematical Reasoning

Chapter 6. Number Theory

6.2. The Integers: Operations and Order—Proofs of Theorems



Mathematical Reasoning

February 14, 2022 1 / 6

Mathematical Reasoning

February 14, 2022 3 / 6

Theorem 6.9 (continued 1)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then

- (a) $0 \cdot a = 0$,
- (b) $a \cdot (-b) = -ab$,
- (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof (continued). ...

$$-(0 \cdot a) + (0 \cdot a + 0 \cdot a) = (-(0 \cdot a) + 0 \cdot a) + 0 \cdot a \text{ by associativity}$$
 of addition
$$= 0 + 0 \cdot a \text{ since } -(0 \cdot a) \text{ is the additive}$$
 inverse of $0 \cdot a$
$$= 0 \cdot a \text{ since } 0 \text{ is the additive identity.}$$

The resulting left-hand and right-hand sides of the first equation give $-c\dot{a}=0$, as claimed.

Theorem 6.9

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then

- (a) $0 \cdot a = 0$,
- (b) $a \cdot (-b) = -ab$,
- (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof. (a) First,

 $0 \cdot a = (0+0) \cdot a$ since 0 is the additive identity $= 0 \cdot a + 0 \cdot a$ multiplication distributes over addition by Note 6.2.A.

Now add $-(0 \cdot a)$ to both sides of this equation (the fact that addition is a binary operation implies that this yields another equation), we get on the 0 on the left-hand side (by the definition of additive inverse) and on the right-hand side we get. . .

Theorem 6.9 (continued 2)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then

- (a) $0 \cdot a = 0$.
- (b) $a \cdot (-b) = -ab$,
- (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof (continued). (b) Remember that the "negative sign" represents an additive inverse of an element (which we know to be unique, by Theorem 6.6). Consider:

$$a \cdot (-b) + ab = a(-b+b)$$
 multiplication distributes over addition by Note 6.2.A
 $= a \cdot 0$ since $-b$ is the additive inverse of b $= 0$ by part (a).

So $a \cdot (-b)$ is an additive inverse of ab; that is, $a \cdot (-b) = -ab$, as claimed.

Theorem 6.9 (continued 3)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then

- (a) $0 \cdot a = 0$,
- (b) $a \cdot (-b) = -ab$,
- (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof (continued). (c) Assume ab = ac where $a \neq 0$ and add -ac to both sides of this equation to get ab + (-ac) = ac + (-ac), or

$$0 = ab + (-ac) = ab + a \cdot (-c)$$
 by part (b)
= $a(b + (-c))$ multiplication distributes over addition by Note 6.2.A.

But $a \neq 0$, so by Note 6.2.A (the fact that \mathbb{Z} has no zero divisors) a(b+(-c))=0 implies that b+(-c)=0 or (adding c to both sides of this new equation) b=c, as claimed.

() Mathematical Reasoning February 14, 2022 6 / 6