Mathematical Reasoning

Chapter 6. Number Theory

6.2. The Integers: Operations and Order-Proofs of Theorems

```
Undergraduate Texts in Mathematios
Larry J. Gerstein
Introduction
to Mathematical
Structures and Proofs
```

Second Edition

Table of contents

(1) Theorem 6.9

Theorem 6.9

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then
(a) $0 \cdot a=0$,
(b) $a \cdot(-b)=-a b$,
(c) Cancellation Law: If $a \neq 0$ and $a b=a c$ then $b=c$.

Proof. (a) First,
$0 \cdot a=(0+0) \cdot a$ since 0 is the additive identity
$=0 \cdot a+0 \cdot a$ multiplication distributes over addition by Note 6.2.A.
Now add $-(0 \cdot a)$ to both sides of this equation (the fact that addition is a binary operation implies that this yields another equation), we get on the 0 on the left-hand side (by the definition of additive inverse) and on the right-hand side we get.

Theorem 6.9

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then
(a) $0 \cdot a=0$,
(b) $a \cdot(-b)=-a b$,
(c) Cancellation Law: If $a \neq 0$ and $a b=a c$ then $b=c$.

Proof. (a) First,
$0 \cdot a=(0+0) \cdot a$ since 0 is the additive identity
$=0 \cdot a+0 \cdot a$ multiplication distributes over addition by Note 6.2.A.
Now add $-(0 \cdot a)$ to both sides of this equation (the fact that addition is a binary operation implies that this yields another equation), we get on the 0 on the left-hand side (by the definition of additive inverse) and on the right-hand side we get...

Theorem 6.9 (continued 1)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then
(a) $0 \cdot a=0$,
(b) $a \cdot(-b)=-a b$,
(c) Cancellation Law: If $a \neq 0$ and $a b=a c$ then $b=c$.

Proof (continued). ...

$$
\begin{aligned}
-(0 \cdot a)+(0 \cdot a+0 \cdot a)= & (-(0 \cdot a)+0 \cdot a)+0 \cdot a \text { by associativity } \\
& \text { of addition } \\
= & 0+0 \cdot a \text { since }-(0 \cdot a) \text { is the additive } \\
& \text { inverse of } 0 \cdot a \\
= & 0 \cdot a \text { since } 0 \text { is the additive identity. }
\end{aligned}
$$

The resulting left-hand and right-hand sides of the first equation give $-c \dot{a}=0$, as claimed.

Theorem 6.9 (continued 2)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then
(a) $0 \cdot a=0$,
(b) $a \cdot(-b)=-a b$,
(c) Cancellation Law: If $a \neq 0$ and $a b=a c$ then $b=c$.

Proof (continued). (b) Remember that the "negative sign" represents an additive inverse of an element (which we know to be unique, by Theorem 6.6). Consider:

$$
\begin{aligned}
a \cdot(-b)+a b= & a(-b+b) \text { multiplication distributes over } \\
& \text { addition by Note 6.2.A } \\
= & a \cdot 0 \text { since }-b \text { is the additive inverse of } b \\
= & 0 \text { by part (a). }
\end{aligned}
$$

So $a \cdot(-b)$ is an additive inverse of $a b$; that is, $a \cdot(-b)=-a b$, as claimed.

Theorem 6.9 (continued 3)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then
(a) $0 \cdot a=0$,
(b) $a \cdot(-b)=-a b$,
(c) Cancellation Law: If $a \neq 0$ and $a b=a c$ then $b=c$.

Proof (continued). (c) Assume $a b=a c$ where $a \neq 0$ and add $-a c$ to both sides of this equation to get $a b+(-a c)=a c+(-a c)$, or
$0=a b+(-a c)=a b+a \cdot(-c)$ by part (b)
$=a(b+(-c))$ multiplication distributes over addition by Note 6.2.A.
But $a \neq 0$, so by Note 6.2.A (the fact that \mathbb{Z} has no zero divisors) $a(b+(-c))=0$ implies that $b+(-c)=0$ or (adding c to both sides of this new equation) $b=c$, as claimed.

