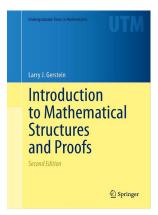
Mathematical Reasoning

Chapter 6. Number Theory

6.2. The Integers: Operations and Order—Proofs of Theorems



()

Table of contents

Theorem 6.9

Theorem 6.9

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then (a) $0 \cdot a = 0$, (b) $a \cdot (-b) = -ab$, (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof. (a) First,

 $0 \cdot a = (0+0) \cdot a$ since 0 is the additive identity = $0 \cdot a + 0 \cdot a$ multiplication distributes over addition by Note 6.2.A.

Now add $-(0 \cdot a)$ to both sides of this equation (the fact that addition is a binary operation implies that this yields another equation), we get on the 0 on the left-hand side (by the definition of additive inverse) and on the right-hand side we get...

Theorem 6.9

Theorem 6.9

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then (a) $0 \cdot a = 0$, (b) $a \cdot (-b) = -ab$, (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof. (a) First,

$$0 \cdot a = (0+0) \cdot a$$
 since 0 is the additive identity
= $0 \cdot a + 0 \cdot a$ multiplication distributes over addition by Note 6.2.A.

Now add $-(0 \cdot a)$ to both sides of this equation (the fact that addition is a binary operation implies that this yields another equation), we get on the 0 on the left-hand side (by the definition of additive inverse) and on the right-hand side we get...

Theorem 6.9 (continued 1)

Theorem 6.9. Let
$$a, b, c \in \mathbb{Z}$$
. Then
(a) $0 \cdot a = 0$,
(b) $a \cdot (-b) = -ab$,
(c) Cancellation Law: If $a \neq 0$ and $ab = ac$ then $b = c$.

Proof (continued). ...

$$-(0 \cdot a) + (0 \cdot a + 0 \cdot a) = (-(0 \cdot a) + 0 \cdot a) + 0 \cdot a \text{ by associativity}$$

of addition
$$= 0 + 0 \cdot a \text{ since } -(0 \cdot a) \text{ is the additive}$$

inverse of $0 \cdot a$
$$= 0 \cdot a \text{ since } 0 \text{ is the additive identity.}$$

The resulting left-hand and right-hand sides of the first equation give $-c\dot{a} = 0$, as claimed.

Theorem 6.9 (continued 2)

Theorem 6.9. Let $a, b, c \in \mathbb{Z}$. Then (a) $0 \cdot a = 0$, (b) $a \cdot (-b) = -ab$, (c) Cancellation Law: If $a \neq 0$ and ab = ac then b = c.

Proof (continued). (b) Remember that the "negative sign" represents an additive inverse of an element (which we know to be unique, by Theorem 6.6). Consider:

$$a \cdot (-b) + ab = a(-b+b)$$
 multiplication distributes over
addition by Note 6.2.A

 $= a \cdot 0$ since -b is the additive inverse of b

$$=$$
 0 by part (a).

So $a \cdot (-b)$ is an additive inverse of ab; that is, $a \cdot (-b) = -ab$, as claimed.

Theorem 6.9 (continued 3)

Theorem 6.9. Let
$$a, b, c \in \mathbb{Z}$$
. Then
(a) $0 \cdot a = 0$,
(b) $a \cdot (-b) = -ab$,
(c) Cancellation Law: If $a \neq 0$ and $ab = ac$ then $b = c$.

Proof (continued). (c) Assume ab = ac where $a \neq 0$ and add -ac to both sides of this equation to get ab + (-ac) = ac + (-ac), or

$$0 = ab + (-ac) = ab + a \cdot (-c)$$
 by part (b)
= $a(b + (-c))$ multiplication distributes over addition by Note 6.2.A.

But $a \neq 0$, so by Note 6.2.A (the fact that \mathbb{Z} has no zero divisors) a(b + (-c)) = 0 implies that b + (-c) = 0 or (adding c to both sides of this new equation) b = c, as claimed.