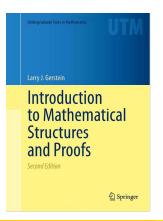
Mathematical Reasoning

Chapter 6. Number Theory

6.3. Divisibility: The Fundamental Theorem of Arithmetic—Proofs of Theorems



Mathematical Reasoning

February 22, 2022

Mathematical Reasoning

February 22, 2022 3 / 17

Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number n there are at least n prime numbers. For n=1, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose p_1, p_2, \ldots, p_k are $k \ge 1$ distinct primes. We need to show the existence of prime p_{k+1} for the induction step. Consider the number $M = (p_1 p_2 \cdots p_k) + 1$. By Theorem 2.71, M has a prime divisor p so that M = pq for some natural number q. ASSUME $p \in \{p_1, p_2, \dots, p_k\}$, say $p=p_1$. But then $1=M-p_1p_2\cdots p_k=p_1(q-p_2p_3\cdots p_k)$. But this implies that $p_1 \mid 1$, which is a CONTRADICTION to the fact that $p_1 > 1$. So the assumption that $p \in \{p_1, p_2, \dots, p_k\}$ is false, and hence $\{p_1, p_2, \dots, p_k, p_{k+1}\}$, where $p_{k+1} = p$, is a set of k+1 prime numbers and the induction step holds. Therefore, by the Principle of Mathematical Induction, for each $n \in \mathbb{N}$ there is a prime number and (since the primes are distinct) there are infinitely many primes.

Theorem 6.15(a)

Theorem 6.15. Let $a, b, c \in \mathbb{Z}$. Then

(a) If $a \mid b$ and $b \neq 0$ then |a| < |b|.

Proof. If $a \mid b$ and $b \neq 0$, then b = ac for some $c \in \mathbb{Z}$ by Definition 6.13; notice that $c \neq 0$. Since $\in \mathbb{Z}$ and $c \neq 0$, then $|n| \geq 1$ and so by Theorem 6.2.A(c)

$$|b| = |ac| = |a| |c| \ge |a|,$$

as claimed.

Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.

Let $a, b \in \mathbb{Z}$, with b > 0. Then there are integers q and r such that a = bq + r and $0 \le r \le b$. Moreover, q and r are uniquely determined by these conditions. Here, g is the quotient and r is the remainder.

Proof. Let bg be the largest multiple of b not exceeding a. Then we have bq < a < b(q+1). Define r = a - bq, so that $0 \le r = a - bq \le b(q+1) - bq = b$, as claimed.

To show that r is unique, suppose that a = bq + r and $a = bq_1 + r_1$, with $0 \le r < b$ and $0 \le r_1 < b$. This implies $b(q - q_1) = r_1 - r$, and we see that $b \mid (r_1 - r)$. Since $0 \le r < b$ and $0 \le r_1 < b$, then the farthest r and rcan be is b-1; that is, $|r-r_1| \le b-1 < b$. But $b | (r_1-r)$ and $r_1 - r \neq 0$ implies $|b| < |r_1 - r|$ by Theorem 6.15(a), so we cannot have $r_1 - r \neq 0$. That is, $r_1 = r$ and we now have that the remainder is unique, as claimed.

Theorem 6.20 (continued)

Theorem 6.20. If a and b are integers, not both 0, then a and b have a unique greatest common divisor.

Proof. Consider the set $L = \{xa + yb \mid x, y \in \mathbb{Z}\}$. Set L contains, for example, all integer multiples of a and b so that L contains some positive integers. Let d be the least positive integer in L; say $d = x_1 a + y_1 b$, with $x_1, y_1 \in \mathbb{Z}$. ASSUME $d \nmid a$. Then by the Division Algorithm (Theorem 6.17) there are integers q and r such that a = dq + r where 0 < r < d. But then

$$r = a - dq = a - (x_1 a + y_1 b)q = (1 - x_1 q)a + (-y_1 q)b \in L$$

a CONTRADICTION since r < d and d is the smallest positive integer in L. So the assumption that $d \nmid a$ is false and hence $d \mid a$. The same argument applies to b to deduce that $d \mid b$ so that d is a common divisor of a and b.

Mathematical Reasoning

February 22, 2022

Mathematical Reasoning

February 22, 2022 7 / 17

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Proof. Let d = (a, b). A divisor of a and b is also a divisor of bg and so, by Theorem 6.15(b), is a divisor of r = a - bq. Since d = (a, b) divides both a and b, then $d \mid r$ and hence $d \mid (b, r)$ (by Definition 6.18 of common divisor). That is, $(a, b) \mid (b, r)$.

Let d' = (b, r). A divisor of b and r is also a divisor of bg and so, by Theorem 6.15(b), is a divisor of a = bq + r. Since d' = (b, r) divides both b and r, then $d' \mid a$ and hence $d' \mid (a, b)$. That is, $(b, r) \mid (a, b)$. Combining these two results, we have (a, b) = (b, r), as claimed.

Theorem 6.20. If a and b are integers, not both 0, then a and b have a unique greatest common divisor.

Proof (continued). Now suppose d' is any common divisor of a and b; say $a = d'a_1$ and $b = d'b_1$. Then

$$d = x_1 a + y_1 b = x_1 d' a_1 + y_1 d' b_1 = d'(x_1 a_1 + y_1 b_1)$$

and so $d' \mid d$. Thus d is a greatest common divisor of a and b.

For uniqueness, suppose d and d_1 are both greatest common divisors for a and b. Then $d_1 \mid d$ (since d is a greatest common divisor) and $d \mid d_1$ (since d_1 si a greatest common divisor). By Theorem 6.15(a), we have $|d| = |d_1|$. But by definition (Definition 6.18), both d and d_1 are positive so that $d = d_1$. Therefore the greatest common divisor of a and b is unique.

Theorem 6.26

Theorem 6.26. Let p be a prime number and let a and b be integers. Then the following implication holds: If $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid ab$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \nmid a$ or $p \nmid b$; say $p \nmid a$.

For $p \nmid a$ we must have (p, a) = 1 since the only positive divisors of prime p are 1 and p. By Corollary 6.21 there are integers x and y such that xp + ya = 1. So $b = b \cdot 1 = b(xp + ya) = p(xb) + (ab)y$ and since $p \mid ab$ then $p \mid (p(xb) + (ab)y)$ (by Theorem 6.15(b)); that is, $p \mid b$.

We have shown that if $p \nmid a$ then $p \mid b$. So we can conclude that either $p \mid a$ or $p \mid b$, as claimed.

February 22, 2022 February 22, 2022 9 / 17 Mathematical Reasoning Mathematical Reasoning

Corollary 6.28. Let m be an integer greater than 1. Then m is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$: If $m \mid ab$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that m is prime, the claim holds by Theorem 6.26.

We consider the contrapositive of the converse and and suppose that m is not prime. Then there are integers a and b with 1 < a < m and 1 < b < m such that m = ab. So $m \mid ab$ (D'uh!) but $m \nmid a$ and $m \nmid b$ (that is, neither $m \mid a$ nor $m \mid b$), as claimed.

Mathematical Reasoning

February 22, 2022

Theorem 6.29. The Fundamental Theorem of Arithmetic.

 p_1, p_2, \dots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of n is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the q's prime, then the q's are just a rearrangement of the p's. That is, r = s and, if we label the primes so that $p_1 \leq p_2 \leq \cdots \leq p_r$ and $q_1 \leq q_2 \leq \cdots \leq q_s$, then $p_i = q_i$ for $1 \le i \le r$.

Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

We give an inductive proof on positive integer n itself. Suppose $n = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ with the p's and q's prime and $p_1 \le p_2 \le \cdots \le p_r$. If n=2 then $n=p_1=q_1=2$, establishing the basis case. For the induction hypothesis, assume that n > 2 and that the theorem holds for all integers t satisfying $2 \le t \le n-1$.

Mathematical Reasoning

Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let n be an integer greater than 1. Then there are prime numbers p_1, p_2, \dots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of n is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the q's prime, then the q's are just a rearrangement of the p's.

Proof (continued). Since $p_1p_2\cdots p_r=q_1q_2\cdots q_s$, we have $p\mid q_1q_2\ldots q_s$ so that by Corollary 6.27 $p_1 \mid q_i$ for some i. By a change of subscripts on the q's (if necessary), we can suppose that $p_1 \mid q_1$. But q_1 is prime and $p_1 \neq 1$, so we have $p_1 = q_1$. So by the Cancellation Law (Theorem 6.9(c)) we have $p_2p_3\cdots p_r=q_2q_3\cdots q_s$. Now $p_2p_3\cdots p_r< n$, so by the induction hypothesis we have that r-1=s-1 (and so r=s) and (assuming without loss of generality that $q_2 \leq q_3 \leq \cdots \leq q_r$), we have $p_i = q_i$ for $2 \le i \le r$. That is, r = s and $p_i = q_i$ for $1 \le i \le r$; so the induction step holds. Therefore, by the Principle of Mathematical Induction, the result holds for all n > 1, as claimed.

Corollary 6.30

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \geq 2$. Then n has a unique factorization of the form $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ where $t \ge 1$, the p_i are distinct primes satisfying $p_1 \le p_2 \le \cdots \le p_t$, and $\alpha_i \ge 1$ for $1 \le i \le t$.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a product of primes of the form $|n| = q_1 q_2 \cdots q_s$ where $q_1 \leq q_2 \leq \cdots \leq q_s$ (unique in the sense stated in Theorem 6.29). Denote the least of q_1, q_2, \ldots, q_s as p_1 and let α_1 be the number of times p_1 appears in the list q_1, q_2, \ldots, q_s . Let p_2 be the second least of q_1, q_2, \ldots, q_s and let α_2 be the number of times p_2 appears in the list. Similarly, let p_i be the ith least of q_1, q_2, \ldots, q_s and let α_i be the number of times p_i appears in the list. Since the list is finite, then this process ends at some p_t (the greatest of q_1, q_2, \ldots, q_s). We then have that $|n| = q_1 q_2 \cdots q_s = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$. So if n>1 then $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$, and if n<-1 then $n = -p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, as claimed.

February 22, 2022 11 / 17

Theorem 6.31

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2} = a/b$ for some positive integers a and b. Notice that by factoring a and b into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor (a,b)=1. We have $\sqrt{2}b=a$ so that, squaring both sides, $2b^2=a^2$. Therefore $2 \mid a^2$. By Theorem 6.26, this implies $2 \mid a$ so that a = 2m for some $m \in \mathbb{Z}$. But then $2b^2 = 4m^2$ or $b^2 = 2m^2$. Therefore $2 \mid b$. But then 2 is a common divisor a and b, CONTRADICTING the fact that (a,b)=1. So the assumption that $\sqrt{2}$ is rational is false, and hence $\sqrt{2}$ is irrational, as claimed.

Mathematical Reasoning

February 22, 2022

Exercise 6.33 (continued)

Exercise 6.33. Suppose a and b are integers such that for distinct primes p_1, p_2, \dots, p_t , and integers $\alpha_i \geq 0$ and $\beta_i \geq 0$ for $1 \leq i \leq t$ we have $a=\pm p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$ and $b=\pm p_1^{\beta_1}p_2^{\beta_2}\cdots p_t^{\beta_t}$. Then

$$(a,b)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}.$$

Proof (continued). If q is one of p_1, p_2, \dots, p_t , then (when $q = p_i$) we have that $p_i^{\min\{\alpha_i,\beta_i\}+1}$ is a factor of both a and b. But this is not a factor of a when $\alpha_i = \min\{\alpha_i, \beta_i\}$ and this is not a factor of b when $\beta_i = \min\{\alpha_i, \beta_i\}$; that is, $p_i^{\min\{\alpha_i, \beta_i\}+1}$ is not a common factor of a and b, a CONTRADICTION. Next, if q is some prime other than one of p_1, p_2, \dots, p_t , then by Corollary 6.27 we have $q \mid p_i$ for some $1 \leq i \leq t$, a CONTRADICTION. So the assumption that there is a common divisor a and b greater than the common divisor

$$p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

is false, and hence this is (a, b), as claimed.

Exercise 6.33

Exercise 6.33. Suppose a and b are integers such that for distinct primes p_1, p_2, \dots, p_t , and integers $\alpha_i \geq 0$ and $\beta_i \geq 0$ for 1 < i < t we have $a=\pm p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$ and $b=\pm p_1^{\beta_1}p_2^{\beta_2}\cdots p_t^{\beta_t}$. Then

$$(a,b)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}.$$

Proof. With $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$, we see that

$$p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

is a common divisor of a and b (since p_i^k divides p_i^ℓ for any $k \leq \ell$). ASSUME there is a common divisor of a and b that is greater than this common divisor. Then its prime decomposition (given by the Fundamental Theorem of Arithmetic, Theorem 6.29) includes some additional prime factor q.

February 22, 2022 15 / 17

Theorem 6.35

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Proof. By Corollary 6.30, we have for distinct primes p_1, p_2, \ldots, p_t that $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$ for integers $\alpha_i \geq 0$ and $\beta_i > 0$, for 1 < i < t (for prime divisors of a that are not divisors of b make the corresponding exponents 0 in the representation of b, and vice versa for the prime divisors of b that are not divisors of a). By Exercise 6.33,

$$(a,b)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}.$$

By Note 6.3.A,

$$[a,b] = p_1^{\mathsf{max}\{\alpha_1,\beta_1\}} p_2^{\mathsf{max}\{\alpha_2,\beta_2\}} \cdots p_i^{\mathsf{max}\{\alpha_i,\beta_i\}} \cdots p_t^{\mathsf{max}\{\alpha_t,\beta_t\}}.$$

In the quotient |ab|/(a,b), notice that the exponents $\alpha_i + \beta_i - \min{\{\alpha_i, \beta_i\}} = \max{\{\alpha_i, \beta_i\}}$ for 1 < i < t. Therefore, this quotient equals [a, b], as claimed.