Mathematical Reasoning

Chapter 6. Number Theory 6.3. Divisibility: The Fundamental Theorem of Arithmetic—Proofs of Theorems

Table of contents

- Theorem 6.15(a)
- 2 Theorem 6.16 (Euclid)
- 3 Theorem 6.17. Division Algorithm
- 4 Theorem 6.20
- 5 Lemma 6.22
- 6 Theorem 6.26
- 7 Corollary 6.28
- Theorem 6.29. The Fundamental Theorem of Arithmetic
- Corollary 6.30
- 10 Theorem 6.31

Theorem 6.15(a)

Theorem 6.15. Let $a, b, c \in \mathbb{Z}$. Then (a) If $a \mid b$ and $b \neq 0$ then $|a| \leq |b|$.

Proof. If $a \mid b$ and $b \neq 0$, then b = ac for some $c \in \mathbb{Z}$ by Definition 6.13; notice that $c \neq 0$. Since $\in \mathbb{Z}$ and $c \neq 0$, then $|n| \ge 1$ and so by Theorem 6.2.A(c),

 $|b| = |ac| = |a| |c| \ge |a|,$

as claimed.

Theorem 6.15(a)

Theorem 6.15. Let $a, b, c \in \mathbb{Z}$. Then (a) If $a \mid b$ and $b \neq 0$ then $|a| \leq |b|$.

Proof. If $a \mid b$ and $b \neq 0$, then b = ac for some $c \in \mathbb{Z}$ by Definition 6.13; notice that $c \neq 0$. Since $\in \mathbb{Z}$ and $c \neq 0$, then $|n| \ge 1$ and so by Theorem 6.2.A(c),

$$|b| = |ac| = |a| |c| \ge |a|,$$

as claimed.

Theorem 6.16. (Euclid, circa 300 $_{\rm BCE}$) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number *n* there are at least *n* prime numbers. For n = 1, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose p_1, p_2, \ldots, p_k are $k \ge 1$ distinct primes. We need to show the existence of prime p_{k+1} for the induction step.

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number *n* there are at least *n* prime numbers. For n = 1, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose p_1, p_2, \ldots, p_k are $k \ge 1$ distinct primes. We need to show the existence of prime p_{k+1} for the induction step. Consider the number $M = (p_1 p_2 \cdots p_k) + 1$. By Theorem 2.71, *M* has a prime divisor *p* so that M = pq for some natural number *q*. ASSUME $p \in \{p_1, p_2, \ldots, p_k\}$, say $p = p_1$. But then $1 = M - p_1 p_2 \cdots p_k = p_1(q - p_2 p_3 \cdots p_k)$. But this implies that $p_1 \mid 1$, which is a CONTRADICTION to the fact that $p_1 > 1$.

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number n there are at least n prime numbers. For n = 1, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose p_1, p_2, \ldots, p_k are $k \ge 1$ distinct primes. We need to show the existence of prime p_{k+1} for the induction step. Consider the number $M = (p_1 p_2 \cdots p_k) + 1$. By Theorem 2.71, M has a prime divisor p so that M = pq for some natural number q. ASSUME $p \in \{p_1, p_2, \dots, p_k\}$, say $p = p_1$. But then $1 = M - p_1 p_2 \cdots p_k = p_1(q - p_2 p_3 \cdots p_k)$. But this implies that $p_1 \mid 1$, which is a CONTRADICTION to the fact that $p_1 > 1$. So the assumption that $p \in \{p_1, p_2, \ldots, p_k\}$ is false, and hence $\{p_1, p_2, \ldots, p_k, p_{k+1}\}$, where $p_{k+1} = p$, is a set of k + 1 prime numbers and the induction step holds. Therefore, by the Principle of Mathematical Induction, for each $n \in \mathbb{N}$ there is a prime number and (since the primes are distinct) there are infinitely many primes.

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number n there are at least n prime numbers. For n = 1, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose p_1, p_2, \ldots, p_k are $k \ge 1$ distinct primes. We need to show the existence of prime p_{k+1} for the induction step. Consider the number $M = (p_1 p_2 \cdots p_k) + 1$. By Theorem 2.71, M has a prime divisor p so that M = pq for some natural number q. ASSUME $p \in \{p_1, p_2, \dots, p_k\}$, say $p = p_1$. But then $1 = M - p_1 p_2 \cdots p_k = p_1 (q - p_2 p_3 \cdots p_k)$. But this implies that $p_1 \mid 1$, which is a CONTRADICTION to the fact that $p_1 > 1$. So the assumption that $p \in \{p_1, p_2, \dots, p_k\}$ is false, and hence $\{p_1, p_2, \ldots, p_k, p_{k+1}\}$, where $p_{k+1} = p$, is a set of k+1 prime numbers and the induction step holds. Therefore, by the Principle of Mathematical Induction, for each $n \in \mathbb{N}$ there is a prime number and (since the primes are distinct) there are infinitely many primes.

Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.

Let $a, b \in \mathbb{Z}$, with b > 0. Then there are integers q and r such that a = bq + r and $0 \le r < b$. Moreover, q and r are uniquely determined by these conditions. Here, q is the *quotient* and r is the *remainder*.

Proof. Let bq be the largest multiple of b not exceeding a. Then we have $bq \le a < b(q+1)$. Define r = a - bq, so that $0 \le r = a - bq < b(q+1) - bq = b$, as claimed.

Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.

Let $a, b \in \mathbb{Z}$, with b > 0. Then there are integers q and r such that a = bq + r and $0 \le r < b$. Moreover, q and r are uniquely determined by these conditions. Here, q is the *quotient* and r is the *remainder*.

Proof. Let bq be the largest multiple of b not exceeding a. Then we have $bq \le a < b(q+1)$. Define r = a - bq, so that $0 \le r = a - bq < b(q+1) - bq = b$, as claimed.

To show that r is unique, suppose that a = bq + r and $a = bq_1 + r_1$, with $0 \le r < b$ and $0 \le r_1 < b$. This implies $b(q - q_1) = r_1 - r$, and we see that $b \mid (r_1 - r)$. Since $0 \le r < b$ and $0 \le r_1 < b$, then the farthest r and $_1$ can be is b - 1; that is, $|r - r_1| \le b - 1 < b$. But $b \mid (r_1 - r)$ and $r_1 - r \ne 0$ implies $|b| \le |r_1 - r|$ by Theorem 6.15(a), so we cannot have $r_1 - r \ne 0$. That is, $r_1 = r$ and we now have that the remainder is unique, as claimed.

Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.

Let $a, b \in \mathbb{Z}$, with b > 0. Then there are integers q and r such that a = bq + r and $0 \le r < b$. Moreover, q and r are uniquely determined by these conditions. Here, q is the *quotient* and r is the *remainder*.

Proof. Let bq be the largest multiple of b not exceeding a. Then we have $bq \le a < b(q+1)$. Define r = a - bq, so that $0 \le r = a - bq < b(q+1) - bq = b$, as claimed.

To show that r is unique, suppose that a = bq + r and $a = bq_1 + r_1$, with $0 \le r < b$ and $0 \le r_1 < b$. This implies $b(q - q_1) = r_1 - r$, and we see that $b \mid (r_1 - r)$. Since $0 \le r < b$ and $0 \le r_1 < b$, then the farthest r and $_1$ can be is b - 1; that is, $|r - r_1| \le b - 1 < b$. But $b \mid (r_1 - r)$ and $r_1 - r \ne 0$ implies $|b| \le |r_1 - r|$ by Theorem 6.15(a), so we cannot have $r_1 - r \ne 0$. That is, $r_1 = r$ and we now have that the remainder is unique, as claimed.

Theorem 6.20. If *a* and *b* are integers, not both 0, then *a* and *b* have a unique greatest common divisor.

Proof. Consider the set $L = \{xa + yb \mid x, y \in \mathbb{Z}\}$. Set *L* contains, for example, all integer multiples of *a* and *b* so that *L* contains some positive integers. Let *d* be the least positive integer in *L*; say $d = x_1a + y_1b$, with $x_1, y_1 \in \mathbb{Z}$.

Theorem 6.20. If *a* and *b* are integers, not both 0, then *a* and *b* have a unique greatest common divisor.

Proof. Consider the set $L = \{xa + yb \mid x, y \in \mathbb{Z}\}$. Set *L* contains, for example, all integer multiples of *a* and *b* so that *L* contains some positive integers. Let *d* be the least positive integer in *L*; say $d = x_1a + y_1b$, with $x_1, y_1 \in \mathbb{Z}$. ASSUME $d \not| a$. Then by the Division Algorithm (Theorem 6.17) there are integers *q* and *r* such that a = dq + r where 0 < r < d. But then

$$r = a - dq = a - (x_1a + y_1b)q = (1 - x_1q)a + (-y_1q)b \in L,$$

a CONTRADICTION since r < d and d is the smallest positive integer in L. So the assumption that $d \not| a$ is false and hence $d \mid a$. The same argument applies to b to deduce that $d \mid b$ so that d is a common divisor of a and b.

Theorem 6.20. If *a* and *b* are integers, not both 0, then *a* and *b* have a unique greatest common divisor.

Proof. Consider the set $L = \{xa + yb \mid x, y \in \mathbb{Z}\}$. Set *L* contains, for example, all integer multiples of *a* and *b* so that *L* contains some positive integers. Let *d* be the least positive integer in *L*; say $d = x_1a + y_1b$, with $x_1, y_1 \in \mathbb{Z}$. ASSUME $d \not| a$. Then by the Division Algorithm (Theorem 6.17) there are integers *q* and *r* such that a = dq + r where 0 < r < d. But then

$$r = a - dq = a - (x_1a + y_1b)q = (1 - x_1q)a + (-y_1q)b \in L,$$

a CONTRADICTION since r < d and d is the smallest positive integer in L. So the assumption that $d \not| a$ is false and hence $d \mid a$. The same argument applies to b to deduce that $d \mid b$ so that d is a common divisor of a and b.

Theorem 6.20 (continued)

Theorem 6.20. If a and b are integers, not both 0, then a and b have a unique greatest common divisor.

Proof (continued). Now suppose d' is any common divisor of a and b; say $a = d'a_1$ and $b = d'b_1$. Then

$$d = x_1a + y_1b = x_1d'a_1 + y_1d'b_1 = d'(x_1a_1 + y_1b_1)$$

and so $d' \mid d$. Thus d is a greatest common divisor of a and b.

For uniqueness, suppose d and d_1 are both greatest common divisors for a and b. Then $d_1 | d$ (since d is a greatest common divisor) and $d | d_1$ (since d_1 si a greatest common divisor). By Theorem 6.15(a), we have $|d| = |d_1|$. But by definition (Definition 6.18), both d and d_1 are positive so that $d = d_1$. Therefore the greatest common divisor of a and b is unique.

Theorem 6.20 (continued)

Theorem 6.20. If a and b are integers, not both 0, then a and b have a unique greatest common divisor.

Proof (continued). Now suppose d' is any common divisor of a and b; say $a = d'a_1$ and $b = d'b_1$. Then

$$d = x_1a + y_1b = x_1d'a_1 + y_1d'b_1 = d'(x_1a_1 + y_1b_1)$$

and so $d' \mid d$. Thus d is a greatest common divisor of a and b.

For uniqueness, suppose d and d_1 are both greatest common divisors for a and b. Then $d_1 | d$ (since d is a greatest common divisor) and $d | d_1$ (since d_1 si a greatest common divisor). By Theorem 6.15(a), we have $|d| = |d_1|$. But by definition (Definition 6.18), both d and d_1 are positive so that $d = d_1$. Therefore the greatest common divisor of a and b is unique.

Lemma 6.22

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Proof. Let d = (a, b). A divisor of *a* and *b* is also a divisor of *bq* and so, by Theorem 6.15(b), is a divisor of r = a - bq. Since d = (a, b) divides both *a* and *b*, then d | r and hence d | (b, r) (by Definition 6.18 of common divisor). That is, (a, b) | (b, r).

Lemma 6.22

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Proof. Let d = (a, b). A divisor of a and b is also a divisor of bq and so, by Theorem 6.15(b), is a divisor of r = a - bq. Since d = (a, b) divides both a and b, then d | r and hence d | (b, r) (by Definition 6.18 of common divisor). That is, (a, b) | (b, r).

Let d' = (b, r). A divisor of b and r is also a divisor of bq and so, by Theorem 6.15(b), is a divisor of a = bq + r. Since d' = (b, r) divides both b and r, then d' | a and hence d' | (a, b). That is, (b, r) | (a, b). Combining these two results, we have (a, b) = (b, r), as claimed.

Lemma 6.22

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Proof. Let d = (a, b). A divisor of a and b is also a divisor of bq and so, by Theorem 6.15(b), is a divisor of r = a - bq. Since d = (a, b) divides both a and b, then d | r and hence d | (b, r) (by Definition 6.18 of common divisor). That is, (a, b) | (b, r).

Let d' = (b, r). A divisor of b and r is also a divisor of bq and so, by Theorem 6.15(b), is a divisor of a = bq + r. Since d' = (b, r) divides both b and r, then d' | a and hence d' | (a, b). That is, (b, r) | (a, b). Combining these two results, we have (a, b) = (b, r), as claimed.

Theorem 6.26. Let p be a prime number and let a and b be integers. Then the following implication holds: If $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid ab$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \not| a$ or $p \not| b$; say $p \not| a$.

Theorem 6.26. Let p be a prime number and let a and b be integers. Then the following implication holds: If $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid ab$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \not\mid a$ or $p \not\mid b$; say $p \not\mid a$.

For $p \not| a$ we must have (p, a) = 1 since the only positive divisors of prime p are 1 and p. By Corollary 6.21 there are integers x and y such that xp + ya = 1. So $b = b \cdot 1 = b(xp + ya) = p(xb) + (ab)y$ and since $p \mid ab$ then $p \mid (p(xb) + (ab)y$ (by Theorem 6.15(b)); that is, $p \mid b$.

We have shown that if $p \not| a$ then $p \mid b$. So we can conclude that either $p \mid a$ or $p \mid b$, as claimed.

Theorem 6.26. Let p be a prime number and let a and b be integers. Then the following implication holds: If $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid ab$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \not\mid a$ or $p \not\mid b$; say $p \not\mid a$.

For $p \not| a$ we must have (p, a) = 1 since the only positive divisors of prime p are 1 and p. By Corollary 6.21 there are integers x and y such that xp + ya = 1. So $b = b \cdot 1 = b(xp + ya) = p(xb) + (ab)y$ and since $p \mid ab$ then $p \mid (p(xb) + (ab)y$ (by Theorem 6.15(b)); that is, $p \mid b$.

We have shown that if $p \not| a$ then $p \mid b$. So we can conclude that either $p \mid a$ or $p \mid b$, as claimed.

Corollary 6.28. Let *m* be an integer greater than 1. Then *m* is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$: If $m \mid ab$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that *m* is prime, the claim holds by Theorem 6.26.

Corollary 6.28. Let *m* be an integer greater than 1. Then *m* is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$: If $m \mid ab$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that m is prime, the claim holds by Theorem 6.26.

We consider the contrapositive of the converse and and suppose that m is *not* prime. Then there are integers a and b with 1 < a < m and 1 < b < m such that m = ab. So $m \mid ab$ (D'uh!) but $m \not| a$ and $m \not| b$ (that is, neither $m \mid a$ nor $m \mid b$), as claimed.

Corollary 6.28. Let *m* be an integer greater than 1. Then *m* is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$: If $m \mid ab$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that m is prime, the claim holds by Theorem 6.26.

We consider the contrapositive of the converse and and suppose that m is *not* prime. Then there are integers a and b with 1 < a < m and 1 < b < m such that m = ab. So $m \mid ab$ (D'uh!) but $m \not| a$ and $m \not| b$ (that is, neither $m \mid a$ nor $m \mid b$), as claimed.

Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let *n* be an integer greater than 1. Then there are prime numbers p_1, p_2, \ldots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of *n* is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the *q*'s prime, then the *q*'s are just a rearrangement of the *p*'s. That is, r = s and, if we label the primes so that $p_1 \le p_2 \le \cdots \le p_r$ and $q_1 \le q_2 \le \cdots \le q_s$, then $p_i = q_i$ for $1 \le i \le r$.

Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let *n* be an integer greater than 1. Then there are prime numbers p_1, p_2, \ldots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of *n* is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the *q*'s prime, then the *q*'s are just a rearrangement of the *p*'s. That is, r = s and, if we label the primes so that $p_1 \le p_2 \le \cdots \le p_r$ and $q_1 \le q_2 \le \cdots \le q_s$, then $p_i = q_i$ for $1 \le i \le r$.

Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

We give an inductive proof on positive integer n itself. Suppose $n = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ with the p's and q's prime and $p_1 \leq p_2 \leq \cdots \leq p_r$. If n = 2 then $n = p_1 = q_1 = 2$, establishing the basis case. For the induction hypothesis, assume that n > 2 and that the theorem holds for all integers t satisfying $2 \leq t \leq n - 1$.

Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let *n* be an integer greater than 1. Then there are prime numbers p_1, p_2, \ldots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of *n* is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the *q*'s prime, then the *q*'s are just a rearrangement of the *p*'s. That is, r = s and, if we label the primes so that $p_1 \le p_2 \le \cdots \le p_r$ and $q_1 \le q_2 \le \cdots \le q_s$, then $p_i = q_i$ for $1 \le i \le r$.

Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

We give an inductive proof on positive integer n itself. Suppose $n = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ with the p's and q's prime and $p_1 \leq p_2 \leq \cdots \leq p_r$. If n = 2 then $n = p_1 = q_1 = 2$, establishing the basis case. For the induction hypothesis, assume that n > 2 and that the theorem holds for all integers t satisfying $2 \leq t \leq n - 1$.

Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let *n* be an integer greater than 1. Then there are prime numbers p_1, p_2, \ldots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of *n* is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the *q*'s prime, then the *q*'s are just a rearrangement of the *p*'s.

Proof (continued). Since $p_1p_2 \cdots p_r = q_1q_2 \cdots q_s$, we have $p \mid q_1q_2 \ldots q_s$ so that by Corollary 6.27 $p_1 \mid q_i$ for some *i*. By a change of subscripts on the *q*'s (if necessary), we can suppose that $p_1 \mid q_1$. But q_1 is prime and $p_1 \neq 1$, so we have $p_1 = q_1$. So by the Cancellation Law (Theorem 6.9(c)) we have $p_2p_3 \cdots p_r = q_2q_3 \cdots q_s$. Now $p_2p_3 \cdots p_r < n$, so by the induction hypothesis we have that r - 1 = s - 1 (and so r = s) and (assuming without loss of generality that $q_2 \leq q_3 \leq \cdots \leq q_r$), we have $p_i = q_i$ for $2 \leq i \leq r$. That is, r = s and $p_i = q_i$ for $1 \leq i \leq r$; so the induction step holds. Therefore, by the Principle of Mathematical Induction, the result holds for all n > 1, as claimed.

Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let *n* be an integer greater than 1. Then there are prime numbers p_1, p_2, \ldots, p_r such that $n = p_1 p_2 \cdots p_r$. Moreover, this factorization of *n* is unique in the following sense: If $n = q_1 q_2 \cdots q_s$ also, with the *q*'s prime, then the *q*'s are just a rearrangement of the *p*'s.

Proof (continued). Since $p_1p_2 \cdots p_r = q_1q_2 \cdots q_s$, we have $p \mid q_1q_2 \ldots q_s$ so that by Corollary 6.27 $p_1 \mid q_i$ for some *i*. By a change of subscripts on the *q*'s (if necessary), we can suppose that $p_1 \mid q_1$. But q_1 is prime and $p_1 \neq 1$, so we have $p_1 = q_1$. So by the Cancellation Law (Theorem 6.9(c)) we have $p_2p_3 \cdots p_r = q_2q_3 \cdots q_s$. Now $p_2p_3 \cdots p_r < n$, so by the induction hypothesis we have that r - 1 = s - 1 (and so r = s) and (assuming without loss of generality that $q_2 \leq q_3 \leq \cdots \leq q_r$), we have $p_i = q_i$ for $2 \leq i \leq r$. That is, r = s and $p_i = q_i$ for $1 \leq i \leq r$; so the induction step holds. Therefore, by the Principle of Mathematical Induction, the result holds for all n > 1, as claimed.

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \ge 2$. Then *n* has a unique factorization of the form $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ where $t \ge 1$, the p_i are distinct primes satisfying $p_1 \le p_2 \le \cdots \le p_t$, and $\alpha_i \ge 1$ for $1 \le i \le t$.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a product of primes of the form $|n| = q_1q_2 \cdots q_s$ where $q_1 \le q_2 \le \cdots \le q_s$ (unique in the sense stated in Theorem 6.29).

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \ge 2$. Then *n* has a unique factorization of the form $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ where $t \ge 1$, the p_i are distinct primes satisfying $p_1 \le p_2 \le \cdots \le p_t$, and $\alpha_i \ge 1$ for $1 \le i \le t$.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a product of primes of the form $|n| = q_1q_2\cdots q_s$ where $q_1 \le q_2 \le \cdots \le q_s$ (unique in the sense stated in Theorem 6.29). Denote the least of

 q_1, q_2, \ldots, q_s as p_1 and let α_1 be the number of times p_1 appears in the list q_1, q_2, \ldots, q_s . Let p_2 be the second least of q_1, q_2, \ldots, q_s and let α_2 be the number of times p_2 appears in the list. Similarly, let p_i be the *i*th least of q_1, q_2, \ldots, q_s and let α_i be the number of times p_i appears in the list. Since the list is finite, then this process ends at some p_t (the greatest of q_1, q_2, \ldots, q_s).

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \ge 2$. Then n has a unique factorization of the form $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ where $t \ge 1$, the p_i are distinct primes satisfying $p_1 \le p_2 \le \cdots \le p_t$, and $\alpha_i \ge 1$ for $1 \le i \le t$.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a product of primes of the form $|n| = q_1 q_2 \cdots q_s$ where $q_1 \leq q_2 \leq \cdots \leq q_s$ (unique in the sense stated in Theorem 6.29). Denote the least of q_1, q_2, \ldots, q_s as p_1 and let α_1 be the number of times p_1 appears in the list q_1, q_2, \ldots, q_s . Let p_2 be the second least of q_1, q_2, \ldots, q_s and let α_2 be the number of times p_2 appears in the list. Similarly, let p_i be the *i*th least of q_1, q_2, \ldots, q_s and let α_i be the number of times p_i appears in the list. Since the list is finite, then this process ends at some p_t (the greatest of q_1, q_2, \ldots, q_s). We then have that $|n| = q_1 q_2 \cdots q_s = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$. So if n > 1 then $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, and if n < -1 then $n = -p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, as claimed.

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \ge 2$. Then n has a unique factorization of the form $n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ where $t \ge 1$, the p_i are distinct primes satisfying $p_1 \le p_2 \le \cdots \le p_t$, and $\alpha_i \ge 1$ for $1 \le i \le t$.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a product of primes of the form $|n| = q_1 q_2 \cdots q_s$ where $q_1 \leq q_2 \leq \cdots \leq q_s$ (unique in the sense stated in Theorem 6.29). Denote the least of q_1, q_2, \ldots, q_s as p_1 and let α_1 be the number of times p_1 appears in the list q_1, q_2, \ldots, q_s . Let p_2 be the second least of q_1, q_2, \ldots, q_s and let α_2 be the number of times p_2 appears in the list. Similarly, let p_i be the *i*th least of q_1, q_2, \ldots, q_s and let α_i be the number of times p_i appears in the list. Since the list is finite, then this process ends at some p_t (the greatest of $q_1, q_2, ..., q_s$). We then have that $|n| = q_1 q_2 \cdots q_s = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$. So if n > 1 then $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, and if n < -1 then $n = -p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, as claimed.

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2} = a/b$ for some positive integers *a* and *b*. Notice that by factoring *a* and *b* into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor (a, b) = 1.

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2} = a/b$ for some positive integers *a* and *b*. Notice that by factoring *a* and *b* into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor (a, b) = 1. We have $\sqrt{2}b = a$ so that, squaring both sides, $2b^2 = a^2$. Therefore $2 | a^2$. By Theorem 6.26, this implies 2 | a so that a = 2m for some $m \in \mathbb{Z}$. But then $2b^2 = 4m^2$ or $b^2 = 2m^2$. Therefore 2 | b. But then 2 is a common divisor *a* and *b*, CONTRADICTING the fact that (a, b) = 1. So the assumption that $\sqrt{2}$ is rational is false, and hence $\sqrt{2}$ is irrational, as claimed.

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2} = a/b$ for some positive integers *a* and *b*. Notice that by factoring *a* and *b* into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor (a, b) = 1. We have $\sqrt{2}b = a$ so that, squaring both sides, $2b^2 = a^2$. Therefore $2 | a^2$. By Theorem 6.26, this implies 2 | a so that a = 2m for some $m \in \mathbb{Z}$. But then $2b^2 = 4m^2$ or $b^2 = 2m^2$. Therefore 2 | b. But then $2b^2 = 4m^2$ or $b^2 = 2m^2$. Therefore 2 | b. But then (a, b) = 1. So the assumption that $\sqrt{2}$ is rational is false, and hence $\sqrt{2}$ is irrational, as claimed.

Exercise 6.33

Exercise 6.33

Exercise 6.33. Suppose *a* and *b* are integers such that for distinct primes p_1, p_2, \ldots, p_t , and integers $\alpha_i \ge 0$ and $\beta_i \ge 0$ for $1 \le i \le t$ we have $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$. Then

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

Proof. With
$$a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$$
 and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$, we see that
$$p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

is a common divisor of a and b (since p_i^k divides p_i^{ℓ} for any $k \leq \ell$).

Exercise 6.33

Exercise 6.33. Suppose *a* and *b* are integers such that for distinct primes p_1, p_2, \ldots, p_t , and integers $\alpha_i \ge 0$ and $\beta_i \ge 0$ for $1 \le i \le t$ we have $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$. Then

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

Proof. With
$$a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$$
 and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$, we see that
$$p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

is a common divisor of a and b (since p_i^k divides p_i^ℓ for any $k \leq \ell$). ASSUME there is a common divisor of a and b that is greater than this common divisor. Then its prime decomposition (given by the Fundamental Theorem of Arithmetic, Theorem 6.29) includes some additional prime factor q.

Exercise 6.33

Exercise 6.33. Suppose *a* and *b* are integers such that for distinct primes p_1, p_2, \ldots, p_t , and integers $\alpha_i \ge 0$ and $\beta_i \ge 0$ for $1 \le i \le t$ we have $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$. Then

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

Proof. With $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$, we see that $p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$

is a common divisor of a and b (since p_i^k divides p_i^ℓ for any $k \le \ell$). ASSUME there is a common divisor of a and b that is greater than this common divisor. Then its prime decomposition (given by the Fundamental Theorem of Arithmetic, Theorem 6.29) includes some additional prime factor q.

Exercise 6.33 (continued)

Exercise 6.33. Suppose *a* and *b* are integers such that for distinct primes p_1, p_2, \ldots, p_t , and integers $\alpha_i \ge 0$ and $\beta_i \ge 0$ for $1 \le i \le t$ we have $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$. Then $(a, b) = p_1^{\min\{\alpha_1, \beta_1\}} p_2^{\min\{\alpha_2, \beta_2\}} \cdots p_i^{\min\{\alpha_i, \beta_i\}} \cdots p_t^{\min\{\alpha_t, \beta_t\}}.$

Proof (continued). If q is one of p_1, p_2, \ldots, p_t , then (when $q = p_i$) we have that $p_i^{\min\{\alpha_i,\beta_i\}+1}$ is a factor of both a and b. But this is not a factor of a when $\alpha_i = \min\{\alpha_i, \beta_i\}$ and this is not a factor of b when $\beta_i = \min\{\alpha_i, \beta_i\}$; that is, $p_i^{\min\{\alpha_i,\beta_i\}+1}$ is not a common factor of a and b, a CONTRADICTION. Next, if q is some prime other than one of p_1, p_2, \ldots, p_t , then by Corollary 6.27 we have $q \mid p_i$ for some $1 \le i \le t$, a CONTRADICTION. So the assumption that there is a common divisor a and b greater than the common divisor

 $p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}$

is false, and hence this is (a, b), as claimed.

C

Exercise 6.33 (continued)

Exercise 6.33. Suppose *a* and *b* are integers such that for distinct primes p_1, p_2, \ldots, p_t , and integers $\alpha_i \ge 0$ and $\beta_i \ge 0$ for $1 \le i \le t$ we have $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$. Then $(a, b) = p_1^{\min\{\alpha_1, \beta_1\}} p_2^{\min\{\alpha_2, \beta_2\}} \cdots p_i^{\min\{\alpha_i, \beta_i\}} \cdots p_t^{\min\{\alpha_t, \beta_t\}}.$

Proof (continued). If q is one of p_1, p_2, \ldots, p_t , then (when $q = p_i$) we have that $p_i^{\min\{\alpha_i,\beta_i\}+1}$ is a factor of both a and b. But this is not a factor of a when $\alpha_i = \min\{\alpha_i, \beta_i\}$ and this is not a factor of b when $\beta_i = \min\{\alpha_i, \beta_i\}$; that is, $p_i^{\min\{\alpha_i,\beta_i\}+1}$ is not a common factor of a and b, a CONTRADICTION. Next, if q is some prime other than one of p_1, p_2, \ldots, p_t , then by Corollary 6.27 we have $q \mid p_i$ for some $1 \le i \le t$, a CONTRADICTION. So the assumption that there is a common divisor a and b greater than the common divisor

 $p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_i^{\min\{\alpha_i,\beta_i\}}\cdots p_t^{\min\{\alpha_t,\beta_t\}}$

is false, and hence this is (a, b), as claimed.

(

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Proof. By Corollary 6.30, we have for distinct primes p_1, p_2, \ldots, p_t that $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$ for integers $\alpha_i \ge 0$ and $\beta_i \ge 0$, for $1 \le i \le t$ (for prime divisors of *a* that are not divisors of *b* make the corresponding exponents 0 in the representation of *b*, and vice versa for the prime divisors of *b* that are not divisors of *a*).

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Proof. By Corollary 6.30, we have for distinct primes p_1, p_2, \ldots, p_t that $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$ for integers $\alpha_i \ge 0$ and $\beta_i \ge 0$, for $1 \le i \le t$ (for prime divisors of *a* that are not divisors of *b* make the corresponding exponents 0 in the representation of *b*, and vice versa for the prime divisors of *b* that are not divisors of *a*). By Exercise 6.33,

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$
By Note 6.3.A,

$$[a,b] = p_1^{\max\{\alpha_1,\beta_1\}} p_2^{\max\{\alpha_2,\beta_2\}} \cdots p_i^{\max\{\alpha_i,\beta_i\}} \cdots p_t^{\max\{\alpha_t,\beta_t\}}.$$

In the quotient |ab|/(a, b), notice that the exponents $\alpha_i + \beta_i - \min\{\alpha_i, \beta_i\} = \max\{\alpha_i, \beta_i\}$ for $1 \le i \le t$. Therefore, this quotient equals [a, b], as claimed.

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Proof. By Corollary 6.30, we have for distinct primes p_1, p_2, \ldots, p_t that $a = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$ and $b = \pm p_1^{\beta_1} p_2^{\beta_2} \cdots p_t^{\beta_t}$ for integers $\alpha_i \ge 0$ and $\beta_i \ge 0$, for $1 \le i \le t$ (for prime divisors of *a* that are not divisors of *b* make the corresponding exponents 0 in the representation of *b*, and vice versa for the prime divisors of *b* that are not divisors of *a*). By Exercise 6.33,

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_i^{\min\{\alpha_i,\beta_i\}} \cdots p_t^{\min\{\alpha_t,\beta_t\}}$$

By Note 6.3.A,

$$[a, b] = p_1^{\max\{\alpha_1, \beta_1\}} p_2^{\max\{\alpha_2, \beta_2\}} \cdots p_i^{\max\{\alpha_i, \beta_i\}} \cdots p_t^{\max\{\alpha_t, \beta_t\}}$$

In the quotient |ab|/(a, b), notice that the exponents $\alpha_i + \beta_i - \min\{\alpha_i, \beta_i\} = \max\{\alpha_i, \beta_i\}$ for $1 \le i \le t$. Therefore, this quotient equals [a, b], as claimed.