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Theorem 6.15(a)

Theorem 6.15(a)

Theorem 6.15. Let a, b, c ∈ Z. Then

(a) If a | b and b 6= 0 then |a| ≤ |b|.

Proof. If a | b and b 6= 0, then b = ac for some c ∈ Z by Definition 6.13;
notice that c 6= 0. Since ∈ Z and c 6= 0, then |n| ≥ 1 and so by Theorem
6.2.A(c),

|b| = |ac| = |a| |c | ≥ |a|,

as claimed.
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Theorem 6.16 (Euclid)

Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 bce) There are infinitely many prime
numbers.

Proof. We use the Principle of Induction and show that for every natural
number n there are at least n prime numbers. For n = 1, we have that 2 is
prime and the basis step is established. For the induction hypothesis,
suppose p1, p2, . . . , pk are k ≥ 1 distinct primes. We need to show the
existence of prime pk+1 for the induction step.

Consider the number
M = (p1p2 · · · pk) + 1. By Theorem 2.71, M has a prime divisor p so that
M = pq for some natural number q. ASSUME p ∈ {p1, p2, . . . , pk}, say
p = p1. But then 1 = M − p1p2 · · · pk = p1(q − p2p3 · · · pk). But this
implies that p1 | 1, which is a CONTRADICTION to the fact that p1 > 1.
So the assumption that p ∈ {p1, p2, . . . , pk} is false, and hence
{p1, p2, . . . , pk , pk+1}, where pk+1 = p, is a set of k + 1 prime numbers
and the induction step holds. Therefore, by the Principle of Mathematical
Induction, for each n ∈ N there is a prime number and (since the primes
are distinct) there are infinitely many primes.
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Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.
Let a, b ∈ Z, with b > 0. Then there are integers q and r such that
a = bq + r and 0 ≤ r < b. Moreover, q and r are uniquely determined by
these conditions. Here, q is the quotient and r is the remainder.

Proof. Let bq be the largest multiple of b not exceeding a. Then we have
bq ≤ a < b(q + 1). Define r = a− bq, so that
0 ≤ r = a− bq < b(q + 1)− bq = b, as claimed.

To show that r is unique, suppose that a = bq + r and a = bq1 + r1, with
0 ≤ r < b and 0 ≤ r1 < b. This implies b(q − q1) = r1 − r , and we see
that b | (r1 − r). Since 0 ≤ r < b and 0 ≤ r1 < b, then the farthest r and 1

can be is b − 1; that is, |r − r1| ≤ b − 1 < b. But b | (r1 − r) and
r1 − r 6= 0 implies |b| ≤ |r1 − r | by Theorem 6.15(a), so we cannot have
r1 − r 6= 0. That is, r1 = r and we now have that the remainder is unique,
as claimed.
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Theorem 6.20

Theorem 6.20

Theorem 6.20. If a and b are integers, not both 0, then a and b have a
unique greatest common divisor.

Proof. Consider the set L = {xa + yb | x , y ∈ Z}. Set L contains, for
example, all integer multiples of a and b so that L contains some positive
integers. Let d be the least positive integer in L; say d = x1a + y1b, with
x1, y1 ∈ Z.

ASSUME d 6 | a. Then by the Division Algorithm (Theorem
6.17) there are integers q and r such that a = dq + r where 0 < r < d .
But then

r = a− dq = a− (x1a + y1b)q = (1− x1q)a + (−y1q)b ∈ L,

a CONTRADICTION since r < d and d is the smallest positive integer in
L. So the assumption that d 6 | a is false and hence d | a. The same
argument applies to b to deduce that d | b so that d is a common divisor
of a and b.
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Theorem 6.20

Theorem 6.20 (continued)

Theorem 6.20. If a and b are integers, not both 0, then a and b have a
unique greatest common divisor.

Proof (continued). Now suppose d ′ is any common divisor of a and b;
say a = d ′a1 and b = d ′b1. Then

d = x1a + y1b = x1d
′a1 + y1d

′b1 = d ′(x1a1 + y1b1)

and so d ′ | d . Thus d is a greatest common divisor of a and b.

For uniqueness, suppose d and d1 are both greatest common divisors for a
and b. Then d1 | d (since d is a greatest common divisor) and d | d1 (since
d1 si a greatest common divisor). By Theorem 6.15(a), we have |d | = |d1|.
But by definition (Definition 6.18), both d and d1 are positive so that
d = d1. Therefore the greatest common divisor of a and b is unique.
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Lemma 6.22

Lemma 6.22

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Proof. Let d = (a, b). A divisor of a and b is also a divisor of bq and so,
by Theorem 6.15(b), is a divisor of r = a− bq. Since d = (a, b) divides
both a and b, then d | r and hence d | (b, r) (by Definition 6.18 of common
divisor). That is, (a, b) | (b, r).

Let d ′ = (b, r). A divisor of b and r is also a divisor of bq and so, by
Theorem 6.15(b), is a divisor of a = bq + r . Since d ′ = (b, r) divides both
b and r , then d ′ | a and hence d ′ | (a, b). That is, (b, r) | (a, b). Combining
these two results, we have (a, b) = (b, r), as claimed.
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Theorem 6.26

Theorem 6.26

Theorem 6.26. Let p be a prime number and let a and b be integers.
Then the following implication holds: If p | ab then either p | a or p | b.

Proof. Suppose that p | ab. If p | a and p | b then the result holds, so we
can assume without loss of generality that p 6 | a or p 6 | b; say p 6 | a.

For p 6 | a we must have (p, a) = 1 since the only positive divisors of prime
p are 1 and p. By Corollary 6.21 there are integers x and y such that
xp + ya = 1. So b = b · 1 = b(xp + ya) = p(xb) + (ab)y and since p | ab
then p | (p(xb) + (ab)y (by Theorem 6.15(b)); that is, p | b.

We have shown that if p 6 | a then p | b. So we can conclude that either
p | a or p | b, as claimed.

() Mathematical Reasoning February 22, 2022 9 / 17



Theorem 6.26

Theorem 6.26

Theorem 6.26. Let p be a prime number and let a and b be integers.
Then the following implication holds: If p | ab then either p | a or p | b.

Proof. Suppose that p | ab. If p | a and p | b then the result holds, so we
can assume without loss of generality that p 6 | a or p 6 | b; say p 6 | a.

For p 6 | a we must have (p, a) = 1 since the only positive divisors of prime
p are 1 and p. By Corollary 6.21 there are integers x and y such that
xp + ya = 1. So b = b · 1 = b(xp + ya) = p(xb) + (ab)y and since p | ab
then p | (p(xb) + (ab)y (by Theorem 6.15(b)); that is, p | b.

We have shown that if p 6 | a then p | b. So we can conclude that either
p | a or p | b, as claimed.

() Mathematical Reasoning February 22, 2022 9 / 17



Theorem 6.26

Theorem 6.26

Theorem 6.26. Let p be a prime number and let a and b be integers.
Then the following implication holds: If p | ab then either p | a or p | b.

Proof. Suppose that p | ab. If p | a and p | b then the result holds, so we
can assume without loss of generality that p 6 | a or p 6 | b; say p 6 | a.

For p 6 | a we must have (p, a) = 1 since the only positive divisors of prime
p are 1 and p. By Corollary 6.21 there are integers x and y such that
xp + ya = 1. So b = b · 1 = b(xp + ya) = p(xb) + (ab)y and since p | ab
then p | (p(xb) + (ab)y (by Theorem 6.15(b)); that is, p | b.

We have shown that if p 6 | a then p | b. So we can conclude that either
p | a or p | b, as claimed.

() Mathematical Reasoning February 22, 2022 9 / 17



Corollary 6.28

Corollary 6.28

Corollary 6.28. Let m be an integer greater than 1. Then m is prime if
and only if the following implication holds for all a, b ∈ Z: If m | ab then
either m | a or m | b.

Proof. With the hypothesis that m is prime, the claim holds by Theorem
6.26.

We consider the contrapositive of the converse and and suppose that m is
not prime. Then there are integers a and b with 1 < a < m and
1 < b < m such that m = ab. So m | ab (D’uh!) but m 6 | a and m 6 | b
(that is, neither m | a nor m | b), as claimed.

() Mathematical Reasoning February 22, 2022 10 / 17



Corollary 6.28

Corollary 6.28

Corollary 6.28. Let m be an integer greater than 1. Then m is prime if
and only if the following implication holds for all a, b ∈ Z: If m | ab then
either m | a or m | b.

Proof. With the hypothesis that m is prime, the claim holds by Theorem
6.26.

We consider the contrapositive of the converse and and suppose that m is
not prime. Then there are integers a and b with 1 < a < m and
1 < b < m such that m = ab. So m | ab (D’uh!) but m 6 | a and m 6 | b
(that is, neither m | a nor m | b), as claimed.

() Mathematical Reasoning February 22, 2022 10 / 17



Corollary 6.28

Corollary 6.28

Corollary 6.28. Let m be an integer greater than 1. Then m is prime if
and only if the following implication holds for all a, b ∈ Z: If m | ab then
either m | a or m | b.

Proof. With the hypothesis that m is prime, the claim holds by Theorem
6.26.

We consider the contrapositive of the converse and and suppose that m is
not prime. Then there are integers a and b with 1 < a < m and
1 < b < m such that m = ab. So m | ab (D’uh!) but m 6 | a and m 6 | b
(that is, neither m | a nor m | b), as claimed.

() Mathematical Reasoning February 22, 2022 10 / 17



Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic.
Let n be an integer greater than 1. Then there are prime numbers
p1, p2, . . . , pr such that n = p1p2 · · · pr . Moreover, this factorization of n
is unique in the following sense: If n = q1q2 · · · qs also, with the q’s prime,
then the q’s are just a rearrangement of the p’s. That is, r = s and, if we
label the primes so that p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs , then
pi = qi for 1 ≤ i ≤ r .

Proof. The fact that such a prime factorization exists is addressed in
Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So
we only need to show uniqueness.

We give an inductive proof on positive integer n itself. Suppose
n = p1p2 · · · pr = q1q2 · · · qs with the p’s and q’s prime and
p1 ≤ p2 ≤ · · · ≤ pr . If n = 2 then n = p1 = q1 = 2, establishing the basis
case. For the induction hypothesis, assume that n > 2 and that the
theorem holds for all integers t satisfying 2 ≤ t ≤ n − 1.
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Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

Theorem 6.29. The Fundamental Theorem of Arithmetic.
Let n be an integer greater than 1. Then there are prime numbers
p1, p2, . . . , pr such that n = p1p2 · · · pr . Moreover, this factorization of n
is unique in the following sense: If n = q1q2 · · · qs also, with the q’s prime,
then the q’s are just a rearrangement of the p’s.

Proof (continued). Since p1p2 · · · pr = q1q2 · · · qs , we have p | q1q2 . . . qs

so that by Corollary 6.27 p1 | qi for some i . By a change of subscripts on
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holds. Therefore, by the Principle of Mathematical Induction, the result
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Corollary 6.30

Corollary 6.30

Corollary 6.30. Let n ∈ Z with |n| ≥ 2. Then n has a unique
factorization of the form n = ±pα1

1 pα2
2 · · · pαt

t where t ≥ 1, the pi are
distinct primes satisfying p1 ≤ p2 ≤ · · · ≤ pt , and αi ≥ 1 for 1 ≤ i ≤ t.

Proof. Notice that |n| > 1. So by the Fundamental Theorem of
Arithmetic (Theorem 6.29), there is a unique factorization of |n| into a
product of primes of the form |n| = q1q2 · · · qs where q1 ≤ q2 ≤ · · · ≤ qs

(unique in the sense stated in Theorem 6.29).

Denote the least of
q1, q2, . . . , qs as p1 and let α1 be the number of times p1 appears in the
list q1, q2, . . . , qs . Let p2 be the second least of q1, q2, . . . , qs and let α2

be the number of times p2 appears in the list. Similarly, let pi be the ith
least of q1, q2, . . . , qs and let αi be the number of times pi appears in the
list. Since the list is finite, then this process ends at some pt (the greatest
of q1, q2, . . . , qs). We then have that |n| = q1q2 · · · qs = pα1

1 pα2
2 · · · pαt

t .
So if n > 1 then n = pα1

1 pα2
2 · · · pαt

t , and if n < −1 then
n = −pα1

1 pα2
2 · · · pαt

t , as claimed.
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Theorem 6.31

Theorem 6.31

Theorem 6.31. The real number
√

2 is irrational.

Proof. ASSUME that
√

2 is rational, so that
√

2 = a/bfor some positive
integers a and b. Notice that by factoring a and b into primes using the
Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any
common prime factors, we can assume that the greatest common divisor
(a, b) = 1.

We have
√

2b = a so that, squaring both sides, 2b2 = a2.
Therefore 2 | a2. By Theorem 6.26, this implies 2 | a so that a = 2m for
some m ∈ Z. But then 2b2 = 4m2 or b2 = 2m2. Therefore 2 | b. But then
2 is a common divisor a and b, CONTRADICTING the fact that
(a, b) = 1. So the assumption that

√
2 is rational is false, and hence

√
2 is

irrational, as claimed.
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Exercise 6.33

Exercise 6.33

Exercise 6.33. Suppose a and b are integers such that for distinct primes
p1, p2, . . . , pt , and integers αi ≥ 0 and βi ≥ 0 for 1 ≤ i ≤ t we have
a = ±pα1

1 pα2
2 · · · pαt

t and b = ±pβ1
1 pβ2

2 · · · pβt
t . Then

(a, b) = p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi ,βi}

i · · · pmin{αt ,βt}
t .

Proof. With a = ±pα1
1 pα2

2 · · · pαt
t and b = ±pβ1

1 pβ2
2 · · · pβt

t , we see that

p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi ,βi}

i · · · pmin{αt ,βt}
t

is a common divisor of a and b (since pk
i divides p`

i for any k ≤ `).

ASSUME there is a common divisor of a and b that is greater than this
common divisor. Then its prime decomposition (given by the Fundamental
Theorem of Arithmetic, Theorem 6.29) includes some additional prime
factor q.
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Exercise 6.33

Exercise 6.33 (continued)

Exercise 6.33. Suppose a and b are integers such that for distinct primes
p1, p2, . . . , pt , and integers αi ≥ 0 and βi ≥ 0 for 1 ≤ i ≤ t we have
a = ±pα1

1 pα2
2 · · · pαt

t and b = ±pβ1
1 pβ2

2 · · · pβt
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(a, b) = p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi ,βi}

i · · · pmin{αt ,βt}
t .

Proof (continued). If q is one of p1, p2, . . . , pt , then (when q = pi ) we

have that p
min{αi ,βi}+1
i is a factor of both a and b. But this is not a factor

of a when αi = min{αi , βi} and this is not a factor of b when

βi = min{αi , βi}; that is, p
min{αi ,βi}+1
i is not a common factor of a and b,

a CONTRADICTION. Next, if q is some prime other than one of
p1, p2, . . . , pt , then by Corollary 6.27 we have q | pi for some 1 ≤ i ≤ t, a
CONTRADICTION. So the assumption that there is a common divisor a
and b greater than the common divisor

p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi ,βi}

i · · · pmin{αt ,βt}
t

is false, and hence this is (a, b), as claimed.
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Theorem 6.35

Theorem 6.35

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Proof. By Corollary 6.30, we have for distinct primes p1, p2, . . . , pt that
a = ±pα1

1 pα2
2 · · · pαt

t and b = ±pβ1
1 pβ2

2 · · · pβt
t for integers αi ≥ 0 and

βi ≥ 0, for 1 ≤ i ≤ t (for prime divisors of a that are not divisors of b make
the corresponding exponents 0 in the representation of b, and vice versa
for the prime divisors of b that are not divisors of a).

By Exercise 6.33,

(a, b) = p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi ,βi}

i · · · pmin{αt ,βt}
t .

By Note 6.3.A,

[a, b] = p
max{α1,β1}
1 p

max{α2,β2}
2 · · · pmax{αi ,βi}

i · · · pmax{αt ,βt}
t .

In the quotient |ab|/(a, b), notice that the exponents
αi + βi −min{αi , βi} = max{αi , βi} for 1 ≤ i ≤ t. Therefore, this
quotient equals [a, b], as claimed.
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