## Mathematical Reasoning

## Chapter 6. Number Theory

6.3. Divisibility: The Fundamental Theorem of Arithmetic—Proofs of

Theorems

```
Undergraduate Texts in Mathematios
Larry J. Gerstein
Introduction
to Mathematical
Structures and Proofs
```

Second Edition

## Table of contents

(1) Theorem 6.15(a)
(2) Theorem 6.16 (Euclid)
(3) Theorem 6.17. Division Algorithm
(4) Theorem 6.20
(5) Lemma 6.22
(6) Theorem 6.26
(7) Corollary 6.28
(8) Theorem 6.29. The Fundamental Theorem of Arithmetic
(9) Corollary 6.30
(10) Theorem 6.31
(11) Exercise 6.33
(12) Theorem 6.35

## Theorem 6.15(a)

Theorem 6.15. Let $a, b, c \in \mathbb{Z}$. Then
(a) If $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$.

Proof. If $a \mid b$ and $b \neq 0$, then $b=a c$ for some $c \in \mathbb{Z}$ by Definition 6.13; notice that $c \neq 0$. Since $\in \mathbb{Z}$ and $c \neq 0$, then $|n| \geq 1$ and so by Theorem 6.2.A(c),

$$
|b|=|a c|=|a||c| \geq|a|,
$$

as claimed.

## Theorem 6.15(a)

Theorem 6.15. Let $a, b, c \in \mathbb{Z}$. Then
(a) If $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$.

Proof. If $a \mid b$ and $b \neq 0$, then $b=a c$ for some $c \in \mathbb{Z}$ by Definition 6.13; notice that $c \neq 0$. Since $\in \mathbb{Z}$ and $c \neq 0$, then $|n| \geq 1$ and so by Theorem 6.2.A(c),

$$
|b|=|a c|=|a||c| \geq|a|,
$$

as claimed.

## Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number $n$ there are at least $n$ prime numbers. For $n=1$, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose $p_{1}, p_{2}, \ldots, p_{k}$ are $k \geq 1$ distinct primes. We need to show the existence of prime $p_{k+1}$ for the induction step.

## Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number $n$ there are at least $n$ prime numbers. For $n=1$, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose $p_{1}, p_{2}, \ldots, p_{k}$ are $k \geq 1$ distinct primes. We need to show the existence of prime $p_{k+1}$ for the induction step. Consider the number $M=\left(p_{1} p_{2} \cdots p_{k}\right)+1$. By Theorem 2.71, $M$ has a prime divisor $p$ so that $M=p q$ for some natural number $q$. ASSUME $p \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, say $p=p_{1}$. But then $1=M-p_{1} p_{2} \cdots p_{k}=p_{1}\left(q-p_{2} p_{3} \cdots p_{k}\right)$. But this implies that $p_{1} \mid 1$, which is a CONTRADICTION to the fact that $p_{1}>1$.

## Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number $n$ there are at least $n$ prime numbers. For $n=1$, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose $p_{1}, p_{2}, \ldots, p_{k}$ are $k \geq 1$ distinct primes. We need to show the existence of prime $p_{k+1}$ for the induction step. Consider the number $M=\left(p_{1} p_{2} \cdots p_{k}\right)+1$. By Theorem 2.71, $M$ has a prime divisor $p$ so that $M=p q$ for some natural number $q$. ASSUME $p \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, say $p=p_{1}$. But then $1=M-p_{1} p_{2} \cdots p_{k}=p_{1}\left(q-p_{2} p_{3} \cdots p_{k}\right)$. But this implies that $p_{1} \mid 1$, which is a CONTRADICTION to the fact that $p_{1}>1$. So the assumption that $p \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ is false, and hence $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}\right\}$, where $p_{k+1}=p$, is a set of $k+1$ prime numbers and the induction step holds. Therefore, by the Principle of Mathematical Induction, for each $n \in \mathbb{N}$ there is a prime number and (since the primes are distinct) there are infinitely many primes.

## Theorem 6.16 (Euclid)

Theorem 6.16. (Euclid, circa 300 BCE) There are infinitely many prime numbers.

Proof. We use the Principle of Induction and show that for every natural number $n$ there are at least $n$ prime numbers. For $n=1$, we have that 2 is prime and the basis step is established. For the induction hypothesis, suppose $p_{1}, p_{2}, \ldots, p_{k}$ are $k \geq 1$ distinct primes. We need to show the existence of prime $p_{k+1}$ for the induction step. Consider the number $M=\left(p_{1} p_{2} \cdots p_{k}\right)+1$. By Theorem 2.71, $M$ has a prime divisor $p$ so that $M=p q$ for some natural number $q$. ASSUME $p \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, say $p=p_{1}$. But then $1=M-p_{1} p_{2} \cdots p_{k}=p_{1}\left(q-p_{2} p_{3} \cdots p_{k}\right)$. But this implies that $p_{1} \mid 1$, which is a CONTRADICTION to the fact that $p_{1}>1$. So the assumption that $p \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ is false, and hence $\left\{p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}\right\}$, where $p_{k+1}=p$, is a set of $k+1$ prime numbers and the induction step holds. Therefore, by the Principle of Mathematical Induction, for each $n \in \mathbb{N}$ there is a prime number and (since the primes are distinct) there are infinitely many primes.

## Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.
Let $a, b \in \mathbb{Z}$, with $b>0$. Then there are integers $q$ and $r$ such that $a=b q+r$ and $0 \leq r<b$. Moreover, $q$ and $r$ are uniquely determined by these conditions. Here, $q$ is the quotient and $r$ is the remainder.

Proof. Let $b q$ be the largest multiple of $b$ not exceeding $a$. Then we have $b q \leq a<b(q+1)$. Define $r=a-b q$, so that $0 \leq r=a-b q<b(q+1)-b q=b$, as claimed

## Theorem 6.17. Division Algorithm

Theorem 6.17. Division Algorithm.
Let $a, b \in \mathbb{Z}$, with $b>0$. Then there are integers $q$ and $r$ such that $a=b q+r$ and $0 \leq r<b$. Moreover, $q$ and $r$ are uniquely determined by these conditions. Here, $q$ is the quotient and $r$ is the remainder.

Proof. Let $b q$ be the largest multiple of $b$ not exceeding $a$. Then we have $b q \leq a<b(q+1)$. Define $r=a-b q$, so that $0 \leq r=a-b q<b(q+1)-b q=b$, as claimed.

To show that $r$ is unique, suppose that $a=b q+r$ and $a=b q_{1}+r_{1}$, with $0 \leq r<b$ and $0 \leq r_{1}<b$. This implies $b\left(q-q_{1}\right)=r_{1}-r$, and we see that $b \mid\left(r_{1}-r\right)$. Since $0 \leq r<b$ and $0 \leq r_{1}<b$, then the farthest $r$ and ${ }_{1}$ can be is $b-1$; that is, $\left|r-r_{1}\right| \leq b-1<b$. But $b \mid\left(r_{1}-r\right)$ and $r_{1}-r \neq 0$ implies $|b| \leq\left|r_{1}-r\right|$ by Theorem 6.15(a), so we cannot have $r_{1}-r \neq 0$. That is, $r_{1}=r$ and we now have that the remainder is unique, as claimed.

## Theorem 6.17. Division Algorithm

## Theorem 6.17. Division Algorithm.

Let $a, b \in \mathbb{Z}$, with $b>0$. Then there are integers $q$ and $r$ such that $a=b q+r$ and $0 \leq r<b$. Moreover, $q$ and $r$ are uniquely determined by these conditions. Here, $q$ is the quotient and $r$ is the remainder.

Proof. Let $b q$ be the largest multiple of $b$ not exceeding $a$. Then we have $b q \leq a<b(q+1)$. Define $r=a-b q$, so that
$0 \leq r=a-b q<b(q+1)-b q=b$, as claimed.
To show that $r$ is unique, suppose that $a=b q+r$ and $a=b q_{1}+r_{1}$, with $0 \leq r<b$ and $0 \leq r_{1}<b$. This implies $b\left(q-q_{1}\right)=r_{1}-r$, and we see that $b \mid\left(r_{1}-r\right)$. Since $0 \leq r<b$ and $0 \leq r_{1}<b$, then the farthest $r$ and ${ }_{1}$ can be is $b-1$; that is, $\left|r-r_{1}\right| \leq b-1<b$. But $b \mid\left(r_{1}-r\right)$ and $r_{1}-r \neq 0$ implies $|b| \leq\left|r_{1}-r\right|$ by Theorem 6.15(a), so we cannot have $r_{1}-r \neq 0$. That is, $r_{1}=r$ and we now have that the remainder is unique, as claimed.

## Theorem 6.20

Theorem 6.20. If $a$ and $b$ are integers, not both 0 , then $a$ and $b$ have a unique greatest common divisor.

Proof. Consider the set $L=\{x a+y b \mid x, y \in \mathbb{Z}\}$. Set $L$ contains, for example, all integer multiples of $a$ and $b$ so that $L$ contains some positive integers. Let $d$ be the least positive integer in $L$; say $d=x_{1} a+y_{1} b$, with $x_{1}, y_{1} \in \mathbb{Z}$.

## Theorem 6.20

Theorem 6.20. If $a$ and $b$ are integers, not both 0 , then $a$ and $b$ have a unique greatest common divisor.

Proof. Consider the set $L=\{x a+y b \mid x, y \in \mathbb{Z}\}$. Set $L$ contains, for example, all integer multiples of $a$ and $b$ so that $L$ contains some positive integers. Let $d$ be the least positive integer in $L$; say $d=x_{1} a+y_{1} b$, with $x_{1}, y_{1} \in \mathbb{Z}$. ASSUME $d \backslash a$. Then by the Division Algorithm (Theorem 6.17) there are integers $q$ and $r$ such that $a=d q+r$ where $0<r<d$. But then

$$
r=a-d q=a-\left(x_{1} a+y_{1} b\right) q=\left(1-x_{1} q\right) a+\left(-y_{1} q\right) b \in L
$$

a CONTRADICTION since $r<d$ and $d$ is the smallest positive integer in $L$. So the assumption that $d X$ a is false and hence $d \mid a$. The same argument applies to $b$ to deduce that $d \mid b$ so that $d$ is a common divisor of $a$ and $b$.

## Theorem 6.20

Theorem 6.20. If $a$ and $b$ are integers, not both 0 , then $a$ and $b$ have a unique greatest common divisor.

Proof. Consider the set $L=\{x a+y b \mid x, y \in \mathbb{Z}\}$. Set $L$ contains, for example, all integer multiples of $a$ and $b$ so that $L$ contains some positive integers. Let $d$ be the least positive integer in $L$; say $d=x_{1} a+y_{1} b$, with $x_{1}, y_{1} \in \mathbb{Z}$. ASSUME $d X a$. Then by the Division Algorithm (Theorem 6.17) there are integers $q$ and $r$ such that $a=d q+r$ where $0<r<d$. But then

$$
r=a-d q=a-\left(x_{1} a+y_{1} b\right) q=\left(1-x_{1} q\right) a+\left(-y_{1} q\right) b \in L
$$

a CONTRADICTION since $r<d$ and $d$ is the smallest positive integer in $L$. So the assumption that $d X a$ is false and hence $d \mid a$. The same argument applies to $b$ to deduce that $d \mid b$ so that $d$ is a common divisor of $a$ and $b$.

## Theorem 6.20 (continued)

Theorem 6.20. If $a$ and $b$ are integers, not both 0 , then $a$ and $b$ have a unique greatest common divisor.

Proof (continued). Now suppose $d^{\prime}$ is any common divisor of $a$ and $b$; say $a=d^{\prime} a_{1}$ and $b=d^{\prime} b_{1}$. Then

$$
d=x_{1} a+y_{1} b=x_{1} d^{\prime} a_{1}+y_{1} d^{\prime} b_{1}=d^{\prime}\left(x_{1} a_{1}+y_{1} b_{1}\right)
$$

and so $d^{\prime} \mid d$. Thus $d$ is a greatest common divisor of $a$ and $b$.
For uniqueness, suppose $d$ and $d_{1}$ are both greatest common divisors for a and $b$. Then $d_{1} \mid d$ (since $d$ is a greatest common divisor) and $d \mid d_{1}$ (since $d_{1}$ si a greatest common divisor). By Theorem 6.15(a), we have $|d|=\left|d_{1}\right|$ But by definition (Definition 6.18), both $d$ and $d_{1}$ are positive so that $d=d_{1}$. Therefore the greatest common divisor of $a$ and $b$ is unique.

## Theorem 6.20 (continued)

Theorem 6.20. If $a$ and $b$ are integers, not both 0 , then $a$ and $b$ have a unique greatest common divisor.

Proof (continued). Now suppose $d^{\prime}$ is any common divisor of $a$ and $b$; say $a=d^{\prime} a_{1}$ and $b=d^{\prime} b_{1}$. Then

$$
d=x_{1} a+y_{1} b=x_{1} d^{\prime} a_{1}+y_{1} d^{\prime} b_{1}=d^{\prime}\left(x_{1} a_{1}+y_{1} b_{1}\right)
$$

and so $d^{\prime} \mid d$. Thus $d$ is a greatest common divisor of $a$ and $b$.
For uniqueness, suppose $d$ and $d_{1}$ are both greatest common divisors for a and $b$. Then $d_{1} \mid d$ (since $d$ is a greatest common divisor) and $d \mid d_{1}$ (since $d_{1}$ si a greatest common divisor). By Theorem 6.15(a), we have $|d|=\left|d_{1}\right|$. But by definition (Definition 6.18), both $d$ and $d_{1}$ are positive so that $d=d_{1}$. Therefore the greatest common divisor of $a$ and $b$ is unique.

## Lemma 6.22

Lemma 6.22. If $a=b q+r$ then $(a, b)=(b, r)$.

Proof. Let $d=(a, b)$. A divisor of $a$ and $b$ is also a divisor of $b q$ and so, by Theorem 6.15(b), is a divisor of $r=a-b q$. Since $d=(a, b)$ divides both $a$ and $b$, then $d \mid r$ and hence $d \mid(b, r)$ (by Definition 6.18 of common divisor). That is, $(a, b) \mid(b, r)$.

## Lemma 6.22

Lemma 6.22. If $a=b q+r$ then $(a, b)=(b, r)$.

Proof. Let $d=(a, b)$. A divisor of $a$ and $b$ is also a divisor of $b q$ and so, by Theorem 6.15(b), is a divisor of $r=a-b q$. Since $d=(a, b)$ divides both $a$ and $b$, then $d \mid r$ and hence $d \mid(b, r)$ (by Definition 6.18 of common divisor). That is, $(a, b) \mid(b, r)$.

Let $d^{\prime}=(b, r)$. A divisor of $b$ and $r$ is also a divisor of $b q$ and so, by Theorem 6.15(b), is a divisor of $a=b q+r$. Since $d^{\prime}=(b, r)$ divides both $b$ and $r$, then $d^{\prime} \mid a$ and hence $d^{\prime} \mid(a, b)$. That is, $(b, r) \mid(a, b)$. Combining these two results, we have $(a, b)=(b, r)$, as claimed.

## Lemma 6.22

Lemma 6.22. If $a=b q+r$ then $(a, b)=(b, r)$.

Proof. Let $d=(a, b)$. A divisor of $a$ and $b$ is also a divisor of $b q$ and so, by Theorem 6.15(b), is a divisor of $r=a-b q$. Since $d=(a, b)$ divides both $a$ and $b$, then $d \mid r$ and hence $d \mid(b, r)$ (by Definition 6.18 of common divisor). That is, $(a, b) \mid(b, r)$.

Let $d^{\prime}=(b, r)$. A divisor of $b$ and $r$ is also a divisor of $b q$ and so, by Theorem 6.15(b), is a divisor of $a=b q+r$. Since $d^{\prime}=(b, r)$ divides both $b$ and $r$, then $d^{\prime} \mid a$ and hence $d^{\prime} \mid(a, b)$. That is, $(b, r) \mid(a, b)$. Combining these two results, we have $(a, b)=(b, r)$, as claimed.

## Theorem 6.26

Theorem 6.26. Let $p$ be a prime number and let $a$ and $b$ be integers. Then the following implication holds: If $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid a b$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \nmid a$ or $p \nmid b$; say $p \nmid a$.

## Theorem 6.26

Theorem 6.26. Let $p$ be a prime number and let $a$ and $b$ be integers. Then the following implication holds: If $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid a b$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \nmid$ a or $p \nmid b$; say $p \nmid a$.

For $p \nmid$ a we must have $(p, a)=1$ since the only positive divisors of prime $p$ are 1 and $p$. By Corollary 6.21 there are integers $x$ and $y$ such that $x p+y a=1$. So $b=b \cdot 1=b(x p+y a)=p(x b)+(a b) y$ and since $p \mid a b$ then $p \mid(p(x b)+(a b) y$ (by Theorem 6.15(b)); that is, $p \mid b$.

We have shown that if $p \nmid$ a then $p \mid b$. So we can conclude that either $p \mid a$ or $p \mid b$, as claimed.

## Theorem 6.26

Theorem 6.26. Let $p$ be a prime number and let $a$ and $b$ be integers. Then the following implication holds: If $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. Suppose that $p \mid a b$. If $p \mid a$ and $p \mid b$ then the result holds, so we can assume without loss of generality that $p \nmid$ a or $p \nmid b$; say $p \nmid a$.

For $p \nmid$ a we must have $(p, a)=1$ since the only positive divisors of prime $p$ are 1 and $p$. By Corollary 6.21 there are integers $x$ and $y$ such that $x p+y a=1$. So $b=b \cdot 1=b(x p+y a)=p(x b)+(a b) y$ and since $p \mid a b$ then $p \mid(p(x b)+(a b) y$ (by Theorem 6.15(b)); that is, $p \mid b$.

We have shown that if $p \nmid$ a then $p \mid b$. So we can conclude that either $p \mid a$ or $p \mid b$, as claimed.

## Corollary 6.28

Corollary 6.28. Let $m$ be an integer greater than 1 . Then $m$ is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$ : If $m \mid a b$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that $m$ is prime, the claim holds by Theorem 6.26.

## Corollary 6.28

Corollary 6.28. Let $m$ be an integer greater than 1 . Then $m$ is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$ : If $m \mid a b$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that $m$ is prime, the claim holds by Theorem 6.26 .

We consider the contrapositive of the converse and and suppose that $m$ is not prime. Then there are integers $a$ and $b$ with $1<a<m$ and $1<b<m$ such that $m=a b$. So $m \mid a b$ (D'uh!) but $m \nmid a$ and $m \nmid b$ (that is, neither $m \mid a$ nor $m \mid b$ ), as claimed.

## Corollary 6.28

Corollary 6.28. Let $m$ be an integer greater than 1 . Then $m$ is prime if and only if the following implication holds for all $a, b \in \mathbb{Z}$ : If $m \mid a b$ then either $m \mid a$ or $m \mid b$.

Proof. With the hypothesis that $m$ is prime, the claim holds by Theorem 6.26.

We consider the contrapositive of the converse and and suppose that $m$ is not prime. Then there are integers $a$ and $b$ with $1<a<m$ and $1<b<m$ such that $m=a b$. So $m \mid a b$ (D'uh!) but $m \nmid a$ and $m \not \backslash b$ (that is, neither $m \mid a$ nor $m \mid b$ ), as claimed.

## Theorem 6.29. The Fundamental Theorem of Arithmetic

Theorem 6.29. The Fundamental Theorem of Arithmetic.
Let $n$ be an integer greater than 1. Then there are prime numbers $p_{1}, p_{2}, \ldots, p_{r}$ such that $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization of $n$ is unique in the following sense: If $n=q_{1} q_{2} \cdots q_{s}$ also, with the $q$ 's prime, then the $q$ 's are just a rearrangement of the $p$ 's. That is, $r=s$ and, if we label the primes so that $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$ and $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$, then $p_{i}=q_{i}$ for $1 \leq i \leq r$.
Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

## Theorem 6.29. The Fundamental Theorem of Arithmetic

## Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let $n$ be an integer greater than 1. Then there are prime numbers
$p_{1}, p_{2}, \ldots, p_{r}$ such that $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization of $n$ is unique in the following sense: If $n=q_{1} q_{2} \cdots q_{s}$ also, with the $q$ 's prime, then the $q$ 's are just a rearrangement of the $p$ 's. That is, $r=s$ and, if we label the primes so that $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$ and $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$, then $p_{i}=q_{i}$ for $1 \leq i \leq r$.

Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

We give an inductive proof on positive integer $n$ itself. Suppose
$\square$ $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. If $n=2$ then $n=p_{1}=q_{1}=2$, establishing the basis case. For the induction hypothesis, assume that $n>2$ and that the theorem holds for all integers $t$ satisfying $2 \leq t \leq n-1$.

## Theorem 6.29. The Fundamental Theorem of Arithmetic

## Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let $n$ be an integer greater than 1. Then there are prime numbers
$p_{1}, p_{2}, \ldots, p_{r}$ such that $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization of $n$ is unique in the following sense: If $n=q_{1} q_{2} \cdots q_{s}$ also, with the $q$ 's prime, then the $q$ 's are just a rearrangement of the $p$ 's. That is, $r=s$ and, if we label the primes so that $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$ and $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$, then $p_{i}=q_{i}$ for $1 \leq i \leq r$.
Proof. The fact that such a prime factorization exists is addressed in Theorem 2.71 in Section 2.10. Mathematical Induction and Recursion So we only need to show uniqueness.

We give an inductive proof on positive integer $n$ itself. Suppose $n=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$ with the $p$ 's and $q$ 's prime and $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. If $n=2$ then $n=p_{1}=q_{1}=2$, establishing the basis case. For the induction hypothesis, assume that $n>2$ and that the theorem holds for all integers $t$ satisfying $2 \leq t \leq n-1$.

## Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

## Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let $n$ be an integer greater than 1. Then there are prime numbers
$p_{1}, p_{2}, \ldots, p_{r}$ such that $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization of $n$ is unique in the following sense: If $n=q_{1} q_{2} \cdots q_{s}$ also, with the $q$ 's prime, then the $q$ 's are just a rearrangement of the $p$ 's.

Proof (continued). Since $p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$, we have $p \mid q_{1} q_{2} \ldots q_{s}$ so that by Corollary $6.27 p_{1} \mid q_{i}$ for some $i$. By a change of subscripts on the $q$ 's (if necessary), we can suppose that $p_{1} \mid q_{1}$. But $q_{1}$ is prime and $p_{1} \neq 1$, so we have $p_{1}=q_{1}$. So by the Cancellation Law (Theorem 6.9(c)) we have $p_{2} p_{3} \cdots p_{r}=q_{2} q_{3} \cdots q_{s}$. Now $p_{2} p_{3} \cdots p_{r}<n$, so by the induction hypothesis we have that $r-1=s-1$ (and so $r=s$ ) and (assuming without loss of generality that $q_{2} \leq q_{3} \leq \cdots \leq q_{r}$ ), we have $p_{i}=q_{i}$ for $2 \leq i \leq r$. That is, $r=s$ and $p_{i}=q_{i}$ for $1 \leq i \leq r$; so the induction step holds. Therefore, by the Principle of Mathematical Induction, the result holds for all $n>1$, as claimed.

## Theorem 6.29. Fundamental Theorem of Arithmetic (cont)

## Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let $n$ be an integer greater than 1. Then there are prime numbers
$p_{1}, p_{2}, \ldots, p_{r}$ such that $n=p_{1} p_{2} \cdots p_{r}$. Moreover, this factorization of $n$ is unique in the following sense: If $n=q_{1} q_{2} \cdots q_{s}$ also, with the $q$ 's prime, then the $q$ 's are just a rearrangement of the $p$ 's.

Proof (continued). Since $p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}$, we have $p \mid q_{1} q_{2} \ldots q_{s}$ so that by Corollary $6.27 p_{1} \mid q_{i}$ for some $i$. By a change of subscripts on the $q$ 's (if necessary), we can suppose that $p_{1} \mid q_{1}$. But $q_{1}$ is prime and $p_{1} \neq 1$, so we have $p_{1}=q_{1}$. So by the Cancellation Law (Theorem 6.9(c)) we have $p_{2} p_{3} \cdots p_{r}=q_{2} q_{3} \cdots q_{s}$. Now $p_{2} p_{3} \cdots p_{r}<n$, so by the induction hypothesis we have that $r-1=s-1$ (and so $r=s$ ) and (assuming without loss of generality that $q_{2} \leq q_{3} \leq \cdots \leq q_{r}$ ), we have $p_{i}=q_{i}$ for $2 \leq i \leq r$. That is, $r=s$ and $p_{i}=q_{i}$ for $1 \leq i \leq r$; so the induction step holds. Therefore, by the Principle of Mathematical Induction, the result holds for all $n>1$, as claimed.

## Corollary 6.30

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \geq 2$. Then $n$ has a unique factorization of the form $n= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ where $t \geq 1$, the $p_{i}$ are distinct primes satisfying $p_{1} \leq p_{2} \leq \cdots \leq p_{t}$, and $\alpha_{i} \geq 1$ for $1 \leq i \leq t$.

Proof. Notice that $|n|>1$. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of $|n|$ into a product of primes of the form $|n|=q_{1} q_{2} \cdots q_{s}$ where $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$ (unique in the sense stated in Theorem 6.29).

## Corollary 6.30

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \geq 2$. Then $n$ has a unique factorization of the form $n= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ where $t \geq 1$, the $p_{i}$ are distinct primes satisfying $p_{1} \leq p_{2} \leq \cdots \leq p_{t}$, and $\alpha_{i} \geq 1$ for $1 \leq i \leq t$.

Proof. Notice that $|n|>1$. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of $|n|$ into a product of primes of the form $|n|=q_{1} q_{2} \cdots q_{s}$ where $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$ (unique in the sense stated in Theorem 6.29). Denote the least of
$q_{1}, q_{2}, \ldots, q_{s}$ as $p_{1}$ and let $\alpha_{1}$ be the number of times $p_{1}$ appears in the list $q_{1}, q_{2}, \ldots, q_{s}$. Let $p_{2}$ be the second least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{2}$ be the number of times $p_{2}$ appears in the list. Similarly, let $p_{i}$ be the $i$ th least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{i}$ be the number of times $p_{i}$ appears in the list. Since the list is finite, then this process ends at some $p_{t}$ (the greatest of $q_{1}, q_{2}$ $q_{s}$ )

## Corollary 6.30

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \geq 2$. Then $n$ has a unique factorization of the form $n= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ where $t \geq 1$, the $p_{i}$ are distinct primes satisfying $p_{1} \leq p_{2} \leq \cdots \leq p_{t}$, and $\alpha_{i} \geq 1$ for $1 \leq i \leq t$.

Proof. Notice that $|n|>1$. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of $|n|$ into a product of primes of the form $|n|=q_{1} q_{2} \cdots q_{s}$ where $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$ (unique in the sense stated in Theorem 6.29). Denote the least of $q_{1}, q_{2}, \ldots, q_{s}$ as $p_{1}$ and let $\alpha_{1}$ be the number of times $p_{1}$ appears in the list $q_{1}, q_{2}, \ldots, q_{s}$. Let $p_{2}$ be the second least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{2}$ be the number of times $p_{2}$ appears in the list. Similarly, let $p_{i}$ be the ith least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{i}$ be the number of times $p_{i}$ appears in the list. Since the list is finite, then this process ends at some $p_{t}$ (the greatest of $q_{1}, q_{2}, \ldots, q_{s}$ ).


## Corollary 6.30

Corollary 6.30. Let $n \in \mathbb{Z}$ with $|n| \geq 2$. Then $n$ has a unique factorization of the form $n= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ where $t \geq 1$, the $p_{i}$ are distinct primes satisfying $p_{1} \leq p_{2} \leq \cdots \leq p_{t}$, and $\alpha_{i} \geq 1$ for $1 \leq i \leq t$.

Proof. Notice that $|n|>1$. So by the Fundamental Theorem of Arithmetic (Theorem 6.29), there is a unique factorization of $|n|$ into a product of primes of the form $|n|=q_{1} q_{2} \cdots q_{s}$ where $q_{1} \leq q_{2} \leq \cdots \leq q_{s}$ (unique in the sense stated in Theorem 6.29). Denote the least of $q_{1}, q_{2}, \ldots, q_{s}$ as $p_{1}$ and let $\alpha_{1}$ be the number of times $p_{1}$ appears in the list $q_{1}, q_{2}, \ldots, q_{s}$. Let $p_{2}$ be the second least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{2}$ be the number of times $p_{2}$ appears in the list. Similarly, let $p_{i}$ be the ith least of $q_{1}, q_{2}, \ldots, q_{s}$ and let $\alpha_{i}$ be the number of times $p_{i}$ appears in the list. Since the list is finite, then this process ends at some $p_{t}$ (the greatest of $q_{1}, q_{2}, \ldots, q_{s}$ ). We then have that $|n|=q_{1} q_{2} \cdots q_{s}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$. So if $n>1$ then $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, and if $n<-1$ then $n=-p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, as claimed.

## Theorem 6.31

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2}=a / b f o r ~ s o m e ~ p o s i t i v e ~$ integers $a$ and $b$. Notice that by factoring $a$ and $b$ into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor $(a, b)=1$.

## Theorem 6.31

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2}=a / b f o r ~ s o m e ~ p o s i t i v e ~$ integers $a$ and $b$. Notice that by factoring $a$ and $b$ into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor $(a, b)=1$. We have $\sqrt{2} b=a$ so that, squaring both sides, $2 b^{2}=a^{2}$ Therefore $2 \mid a^{2}$. By Theorem 6.26, this implies 2|a so that $a=2 m$ for some $m \in \mathbb{Z}$. But then $2 b^{2}=4 m^{2}$ or $b^{2}=2 m^{2}$. Therefore $2 \mid b$. But then 2 is a common divisor $a$ and $b$, CONTRADICTING the fact that $(a, b)=1$. So the assumption that $\sqrt{2}$ is rational is false, and hence $\sqrt{2}$ is irrational, as claimed.

## Theorem 6.31

Theorem 6.31. The real number $\sqrt{2}$ is irrational.

Proof. ASSUME that $\sqrt{2}$ is rational, so that $\sqrt{2}=a$ /bfor some positive integers $a$ and $b$. Notice that by factoring $a$ and $b$ into primes using the Fundamental Theorem of Arithmetic (Theorem 6.29) and removing any common prime factors, we can assume that the greatest common divisor $(a, b)=1$. We have $\sqrt{2} b=a$ so that, squaring both sides, $2 b^{2}=a^{2}$. Therefore $2 \mid a^{2}$. By Theorem 6.26, this implies $2 \mid a$ so that $a=2 m$ for some $m \in \mathbb{Z}$. But then $2 b^{2}=4 m^{2}$ or $b^{2}=2 m^{2}$. Therefore $2 \mid b$. But then 2 is a common divisor $a$ and $b$, CONTRADICTING the fact that $(a, b)=1$. So the assumption that $\sqrt{2}$ is rational is false, and hence $\sqrt{2}$ is irrational, as claimed.

## Exercise 6.33

Exercise 6.33. Suppose $a$ and $b$ are integers such that for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$, and integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ for $1 \leq i \leq t$ we have $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$. Then

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

Proof. With $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$, we see that $p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}}$
is a common divisor of $a$ and $b$ (since $p_{i}^{k}$ divides $p_{i}^{\ell}$ for any $k \leq \ell$ ).

## Exercise 6.33

Exercise 6.33. Suppose $a$ and $b$ are integers such that for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$, and integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ for $1 \leq i \leq t$ we have $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$. Then

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

Proof. With $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$, we see that

$$
p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}}
$$

is a common divisor of $a$ and $b$ (since $p_{i}^{k}$ divides $p_{i}^{\ell}$ for any $k \leq \ell$ ). ASSUME there is a common divisor of $a$ and $b$ that is greater than this common divisor. Then its prime decomposition (given by the Fundamental Theorem of Arithmetic, Theorem 6.29) includes some additional prime factor $q$.

## Exercise 6.33

Exercise 6.33. Suppose $a$ and $b$ are integers such that for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$, and integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ for $1 \leq i \leq t$ we have $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$. Then

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

Proof. With $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$, we see that

$$
p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}}
$$

is a common divisor of $a$ and $b$ (since $p_{i}^{k}$ divides $p_{i}^{\ell}$ for any $k \leq \ell$ ). ASSUME there is a common divisor of $a$ and $b$ that is greater than this common divisor. Then its prime decomposition (given by the Fundamental Theorem of Arithmetic, Theorem 6.29) includes some additional prime factor $q$.

## Exercise 6.33 (continued)

Exercise 6.33. Suppose $a$ and $b$ are integers such that for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$, and integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ for $1 \leq i \leq t$ we have $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$. Then

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

Proof (continued). If $q$ is one of $p_{1}, p_{2}, \ldots, p_{t}$, then (when $q=p_{i}$ ) we have that $p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}+1}$ is a factor of both $a$ and $b$. But this is not a factor of $a$ when $\alpha_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$ and this is not a factor of $b$ when $\beta_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$; that is, $p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}+1}$ is not a common factor of $a$ and $b$, a CONTRADICTION. Next, if $q$ is some prime other than one of $p_{1}, p_{2}, \ldots, p_{t}$, then by Corollary 6.27 we have $q \mid p_{i}$ for some $1 \leq i \leq t$, a CONTRADICTION. So the assumption that there is a common divisor a and $b$ greater than the common divisor


## Exercise 6.33 (continued)

Exercise 6.33. Suppose $a$ and $b$ are integers such that for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$, and integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ for $1 \leq i \leq t$ we have $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$. Then

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

Proof (continued). If $q$ is one of $p_{1}, p_{2}, \ldots, p_{t}$, then (when $q=p_{i}$ ) we have that $p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}+1}$ is a factor of both a and $b$. But this is not a factor of $a$ when $\alpha_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$ and this is not a factor of $b$ when $\beta_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$; that is, $p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}+1}$ is not a common factor of $a$ and $b$, a CONTRADICTION. Next, if $q$ is some prime other than one of $p_{1}, p_{2}, \ldots, p_{t}$, then by Corollary 6.27 we have $q \mid p_{i}$ for some $1 \leq i \leq t$, a CONTRADICTION. So the assumption that there is a common divisor a and $b$ greater than the common divisor

$$
p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}}
$$

is false, and hence this is $(a, b)$, as claimed.

## Theorem 6.35

Theorem 6.35. If $a$ and $b$ are nonzero integers, then $[a, b]=|a b| /(a, b)$. Proof. By Corollary 6.30, we have for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ that $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ for integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$, for $1 \leq i \leq t$ (for prime divisors of $a$ that are not divisors of $b$ make the corresponding exponents 0 in the representation of $b$, and vice versa for the prime divisors of $b$ that are not divisors of $a$ ).

## Theorem 6.35

Theorem 6.35. If $a$ and $b$ are nonzero integers, then $[a, b]=|a b| /(a, b)$.
Proof. By Corollary 6.30, we have for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ that $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ for integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$, for $1 \leq i \leq t$ (for prime divisors of $a$ that are not divisors of $b$ make the corresponding exponents 0 in the representation of $b$, and vice versa for the prime divisors of $b$ that are not divisors of $a$ ). By Exercise 6.33,

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

By Note 6.3.A,

$$
[a, b]=p_{1}^{\max \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\max \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\max \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\max \left\{\alpha_{t}, \beta_{t}\right\}} .
$$

In the quotient $|a b| /(a, b)$, notice that the exponents
$\alpha_{i}+\beta_{i}-\min \left\{\alpha_{i}, \beta_{i}\right\}=\max \left\{\alpha_{i}, \beta_{i}\right\}$ for $1 \leq i \leq t$. Therefore, this quotient equals $[a, b]$, as claimed.

## Theorem 6.35

Theorem 6.35. If $a$ and $b$ are nonzero integers, then $[a, b]=|a b| /(a, b)$.
Proof. By Corollary 6.30, we have for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ that $a= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b= \pm p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ for integers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$, for $1 \leq i \leq t$ (for prime divisors of a that are not divisors of $b$ make the corresponding exponents 0 in the representation of $b$, and vice versa for the prime divisors of $b$ that are not divisors of $a$ ). By Exercise 6.33,

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\min \left\{\alpha_{t}, \beta_{t}\right\}}
$$

By Note 6.3.A,

$$
[a, b]=p_{1}^{\max \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\max \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{i}^{\max \left\{\alpha_{i}, \beta_{i}\right\}} \cdots p_{t}^{\max \left\{\alpha_{t}, \beta_{t}\right\}}
$$

In the quotient $|a b| /(a, b)$, notice that the exponents $\alpha_{i}+\beta_{i}-\min \left\{\alpha_{i}, \beta_{i}\right\}=\max \left\{\alpha_{i}, \beta_{i}\right\}$ for $1 \leq i \leq t$. Therefore, this quotient equals $[a, b]$, as claimed.

