Mathematical Reasoning

Chapter 6. Number Theory

6.4. Congruence; Divisibility Tests—Proofs of Theorems

Introduction to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Theorem 6.41
(2) Theorem 6.42
(3) Theorem 6.45

4 Corollary 6.46 . Test for Divisibility by 9
(5) Theorem 6.48. Test for Divisibility by 11

Theorem 6.41

Theorem 6.41. Fix $m>0$. Then congruence modulo m is an equivalence relation on \mathbb{Z}.

Proof. First, let $a \in \mathbb{Z}$. Then $a=a+m(0)$ and so by Note 6.4.A we have $a \equiv a(\bmod m)$. That is, congruence modulo m is reflexive.

Theorem 6.41

Theorem 6.41. Fix $m>0$. Then congruence modulo m is an equivalence relation on \mathbb{Z}.

Proof. First, let $a \in \mathbb{Z}$. Then $a=a+m(0)$ and so by Note 6.4.A we have $a \equiv a(\bmod m)$. That is, congruence modulo m is reflexive.

Second, suppose $a \equiv b(\bmod m)$. Then by Note 6.4.A, $a=b+m k$ for some $k \in \mathbb{Z}$. Hence, $b=a+m(-k)$ for $-k \in \mathbb{Z}$ so that, by Note 6.4.A, $b \equiv a(\bmod m)$. That is, congruence modulo m is symmetric.

Theorem 6.41

Theorem 6.41. Fix $m>0$. Then congruence modulo m is an equivalence relation on \mathbb{Z}.

Proof. First, let $a \in \mathbb{Z}$. Then $a=a+m(0)$ and so by Note 6.4.A we have $a \equiv a(\bmod m)$. That is, congruence modulo m is reflexive.

Second, suppose $a \equiv b(\bmod m)$. Then by Note 6.4.A, $a=b+m k$ for some $k \in \mathbb{Z}$. Hence, $b=a+m(-k)$ for $-k \in \mathbb{Z}$ so that, by Note 6.4.A, $b \equiv a(\bmod m)$. That is, congruence modulo m is symmetric.

Finally, suppose $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$. Then by Note 6.4.A, $a=b+m k_{1}$ and $b=c+m k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Then $a=\left(c+m k_{2}\right)+m k_{1}=c+m\left(k_{1}+k_{2}\right)$, so be Note 6.4.A we have $a \equiv c$ $(\bmod m)$. That is, congruence modulo m is transitive.

Therefore, since congruence modulo m is symmetric, reflexive, and transitive, then by Definition 2.55 it is an equivalence relation.

Theorem 6.41

Theorem 6.41. Fix $m>0$. Then congruence modulo m is an equivalence relation on \mathbb{Z}.

Proof. First, let $a \in \mathbb{Z}$. Then $a=a+m(0)$ and so by Note 6.4.A we have $a \equiv a(\bmod m)$. That is, congruence modulo m is reflexive.

Second, suppose $a \equiv b(\bmod m)$. Then by Note 6.4.A, $a=b+m k$ for some $k \in \mathbb{Z}$. Hence, $b=a+m(-k)$ for $-k \in \mathbb{Z}$ so that, by Note 6.4.A, $b \equiv a(\bmod m)$. That is, congruence modulo m is symmetric.

Finally, suppose $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$. Then by Note 6.4.A, $a=b+m k_{1}$ and $b=c+m k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Then $a=\left(c+m k_{2}\right)+m k_{1}=c+m\left(k_{1}+k_{2}\right)$, so be Note 6.4.A we have $a \equiv c$ $(\bmod m)$. That is, congruence modulo m is transitive.

Therefore, since congruence modulo m is symmetric, reflexive, and transitive, then by Definition 2.55 it is an equivalence relation.

Theorem 6.42

Theorem 6.42. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
a+c \equiv b+d(\bmod m) \text { and } a c \equiv b d(\bmod m) .
$$

Proof. By Note 6.4.A, $a=b+m k_{1}$ and $c=d+m k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Then $a+c=\left(b+m k_{1}\right)+\left(d+m k_{2}\right)=(b+d)+m\left(k_{1}+k_{2}\right)$. Therefore $a+c=\equiv b+d(\bmod m)$, as claimed.

Also, $a c=\left(b+m k_{1}\right)\left(b+m k_{2}\right)=b d+m\left(k_{1} d+k_{2} b+m k_{1} k_{2}\right)$, so $a c \equiv b d(\bmod m)$, as claimed.

Theorem 6.42

Theorem 6.42. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
a+c \equiv b+d(\bmod m) \text { and } a c \equiv b d(\bmod m) .
$$

Proof. By Note 6.4.A, $a=b+m k_{1}$ and $c=d+m k_{2}$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Then $a+c=\left(b+m k_{1}\right)+\left(d+m k_{2}\right)=(b+d)+m\left(k_{1}+k_{2}\right)$. Therefore $a+c=\equiv b+d(\bmod m)$, as claimed.

Also, $a c=\left(b+m k_{1}\right)\left(b+m k_{2}\right)=b d+m\left(k_{1} d+k_{2} b+m k_{1} k_{2}\right)$, so $a c \equiv b d(\bmod m)$, as claimed.

Theorem 6.45

Theorem 6.45. Every nonnegative integer is congruent modulo 9 to the sum of its decimal digits. Symbolically, if $0 \leq a_{i} \leq 9$ for $0 \leq i \leq t$, then

$$
\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)
$$

Proof. Since $10 \equiv 1(\bmod 9)$, then by Corollary 6.43 (the multiplicative part) $10^{i} \equiv 1(\bmod 9)$ for all $i \geq 0$ and $a_{i} \cdot 10^{i} \equiv a_{i}(\bmod 9)$, and by Corollary 6.42 (the additive part) $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)$, as claimed.

Theorem 6.45

Theorem 6.45. Every nonnegative integer is congruent modulo 9 to the sum of its decimal digits. Symbolically, if $0 \leq a_{i} \leq 9$ for $0 \leq i \leq t$, then

$$
\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)
$$

Proof. Since $10 \equiv 1(\bmod 9)$, then by Corollary 6.43 (the multiplicative part) $10^{i} \equiv 1(\bmod 9)$ for all $i \geq 0$ and $a_{i} \cdot 10^{i} \equiv a_{i}(\bmod 9)$, and by
Corollary 6.42 (the additive part) $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)$, as claimed.

Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9).
An integer is a multiple of 9 if and only if the sum of its decimal digits is a multiple of 9 .

Proof. First notice that we can assume without loss of generality that the given integer is nonnegative.

Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9).
An integer is a multiple of 9 if and only if the sum of its decimal digits is a multiple of 9 .

Proof. First notice that we can assume without loss of generality that the given integer is nonnegative.

Suppose that $a \equiv b(\bmod m)$ and $m \mid a$. Then by Note 6.4.A $a=b+m k_{1}$ for some $k_{1} \in \mathbb{Z}$, and $a=m k_{2}$ for some $k_{2} \in \mathbb{Z}$. Therefore $b=a-m k_{1}=m k_{2}-m k_{1}=m\left(k_{2}-k_{1}\right)$ and hence $m \mid b$. Since congruence modulo m is symmetric by Theorem 6.41, then we have

$$
\text { If } a \equiv b(\bmod m) \text {, then } m|a \Leftrightarrow m| b \text {. }
$$

Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9).

An integer is a multiple of 9 if and only if the sum of its decimal digits is a multiple of 9 .

Proof. First notice that we can assume without loss of generality that the given integer is nonnegative.

Suppose that $a \equiv b(\bmod m)$ and $m \mid a$. Then by Note 6.4.A $a=b+m k_{1}$ for some $k_{1} \in \mathbb{Z}$, and $a=m k_{2}$ for some $k_{2} \in \mathbb{Z}$. Therefore $b=a-m k_{1}=m k_{2}-m k_{1}=m\left(k_{2}-k_{1}\right)$ and hence $m \mid b$. Since congruence modulo m is symmetric by Theorem 6.41, then we have

$$
\text { If } a \equiv b(\bmod m), \text { then } m|a \Leftrightarrow m| b
$$

Applying this with $m=9$ to $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)$, which holds by Theorem 6.45, we have that 9 divides $n=\sum_{i=1}^{t} a_{i} \cdot 10^{i}$ if and only if 9 divides $\sum_{i=0}^{t} a_{i}=a_{0}+a_{1}+\cdots a_{t}$, as claimed

Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9).

An integer is a multiple of 9 if and only if the sum of its decimal digits is a multiple of 9 .

Proof. First notice that we can assume without loss of generality that the given integer is nonnegative.

Suppose that $a \equiv b(\bmod m)$ and $m \mid a$. Then by Note 6.4.A $a=b+m k_{1}$ for some $k_{1} \in \mathbb{Z}$, and $a=m k_{2}$ for some $k_{2} \in \mathbb{Z}$. Therefore $b=a-m k_{1}=m k_{2}-m k_{1}=m\left(k_{2}-k_{1}\right)$ and hence $m \mid b$. Since congruence modulo m is symmetric by Theorem 6.41, then we have

$$
\text { If } a \equiv b(\bmod m), \text { then } m|a \Leftrightarrow m| b
$$

Applying this with $m=9$ to $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t} a_{i}(\bmod 9)$, which holds by Theorem 6.45, we have that 9 divides $n=\sum_{i=1}^{t} a_{i} \cdot 10^{i}$ if and only if 9 divides $\sum_{i=0}^{t} a_{i}=a_{0}+a_{1}+\cdots a_{t}$, as claimed.

Theorem 6.48. Test for Divisibility by 11

Theorem 6.48. (Test for Divisibility by 11).

An integer n with decimal representation $n=a_{t} a_{t-1} \ldots a_{0}$ is divisible by 11 if and only if the number $a_{t}-a_{t-1}+a_{t-2}-\cdots \pm a_{1} \mp a_{0}$ is divisible by 11 .

Proof. Now $n=a_{t} a_{t-1} \ldots a_{0}$ means $n=\sum_{i=0} a_{i} \cdot 10^{i}$. Since $10 \equiv-1$
(mod 11), then by Corollary 6.43 (the multiplicative part) $10^{i} \equiv(-1)^{i}$
$(\bmod 11)$ for all $i \geq 0$ and $a_{i} \cdot 10^{i} \equiv(-1)^{i} a_{i}(\bmod 11)$, and by Corollary
6.42 (the additive part) $\sum_{i=0} a_{i} \cdot 10^{i} \equiv \sum_{i=0}(-1)^{i} a_{i}(\bmod 11)$.

Theorem 6.48. Test for Divisibility by 11

Theorem 6.48. (Test for Divisibility by 11).
An integer n with decimal representation $n=a_{t} a_{t-1} \ldots a_{0}$ is divisible by 11 if and only if the number $a_{t}-a_{t-1}+a_{t-2}-\cdots \pm a_{1} \mp a_{0}$ is divisible by 11 .
Proof. Now $n=a_{t} a_{t-1} \ldots a_{0}$ means $n=\sum_{i=0}^{t} a_{i} \cdot 10^{i}$. Since $10 \equiv-1$ (mod 11), then by Corollary 6.43 (the multiplicative part) $10^{i} \equiv(-1)^{i}$ $(\bmod 11)$ for all $i \geq 0$ and $a_{i} \cdot 10^{i} \equiv(-1)^{i} a_{i}(\bmod 11)$, and by Corollary 6.42 (the additive part) $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t}(-1)^{i} a_{i}(\bmod 11)$. We saw in the proof of Corollary 6.47 that

$$
\text { If } a \equiv b(\bmod m), \text { then } m|a \Leftrightarrow m| b \text {, }
$$

so with $m=11$ we have that 11 divides $n=\sum_{i=0}^{t} a_{i} \cdot 10^{i}$ if and only if 11 divides $\sum_{i=0}^{t}(-1)^{i} a_{i}= \pm\left(a_{t}-a_{t-1}+a_{t-2}=\cdots \pm a_{0}\right)$, as claimed. \square

Theorem 6.48. Test for Divisibility by 11

Theorem 6.48. (Test for Divisibility by 11).

An integer n with decimal representation $n=a_{t} a_{t-1} \ldots a_{0}$ is divisible by 11 if and only if the number $a_{t}-a_{t-1}+a_{t-2}-\cdots \pm a_{1} \mp a_{0}$ is divisible by 11 .
Proof. Now $n=a_{t} a_{t-1} \ldots a_{0}$ means $n=\sum_{i=0}^{t} a_{i} \cdot 10^{i}$. Since $10 \equiv-1$ (mod 11), then by Corollary 6.43 (the multiplicative part) $10^{i} \equiv(-1)^{i}$ $(\bmod 11)$ for all $i \geq 0$ and $a_{i} \cdot 10^{i} \equiv(-1)^{i} a_{i}(\bmod 11)$, and by Corollary 6.42 (the additive part) $\sum_{i=0}^{t} a_{i} \cdot 10^{i} \equiv \sum_{i=0}^{t}(-1)^{i} a_{i}(\bmod 11)$. We saw in the proof of Corollary 6.47 that

$$
\text { If } a \equiv b(\bmod m), \text { then } m|a \Leftrightarrow m| b \text {, }
$$

so with $m=11$ we have that 11 divides $n=\sum_{i=0}^{t} a_{i} \cdot 10^{i}$ if and only if 11 divides $\sum_{i=0}^{t}(-1)^{i} a_{i}= \pm\left(a_{t}-a_{t-1}+a_{t-2}=\cdots \pm a_{0}\right)$, as claimed.

