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Theorem 6.41

Theorem 6.41

Theorem 6.41. Fix m > 0. Then congruence modulo m is an equivalence
relation on Z.

Proof. First, let a ∈ Z. Then a = a + m(0) and so by Note 6.4.A we have
a ≡ a (mod m). That is, congruence modulo m is reflexive.

Second, suppose a ≡ b (mod m). Then by Note 6.4.A, a = b + mk for
some k ∈ Z. Hence, b = a + m(−k) for −k ∈ Z so that, by Note 6.4.A,
b ≡ a (mod m). That is, congruence modulo m is symmetric.

Finally, suppose a ≡ b (mod m) and b ≡ c (mod m). Then by Note 6.4.A,
a = b + mk1 and b = c + mk2 for some k1, k2 ∈ Z. Then
a = (c + mk2) + mk1 = c + m(k1 + k2), so be Note 6.4.A we have a ≡ c
(mod m). That is, congruence modulo m is transitive.

Therefore, since congruence modulo m is symmetric, reflexive, and
transitive, then by Definition 2.55 it is an equivalence relation.
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Theorem 6.42

Theorem 6.42. If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof. By Note 6.4.A, a = b + mk1 and c = d + mk2 for some k1, k2 ∈ Z.
Then a + c = (b + mk1) + (d + mk2) = (b + d) + m(k1 + k2). Therefore
a + c =≡ b + d (mod m), as claimed.

Also, ac = (b + mk1)(b + mk2) = bd + m(k1d + k2b + mk1k2), so
ac ≡ bd (mod m), as claimed.
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Theorem 6.45

Theorem 6.45. Every nonnegative integer is congruent modulo 9 to the
sum of its decimal digits. Symbolically, if 0 ≤ ai ≤ 9 for 0 ≤ i ≤ t, then

t∑
i=0

ai · 10i ≡
t∑

i=0

ai (mod 9).

Proof. Since 10 ≡ 1 (mod 9), then by Corollary 6.43 (the multiplicative
part) 10i ≡ 1 (mod 9) for all i ≥ 0 and ai · 10i ≡ ai (mod 9), and by

Corollary 6.42 (the additive part)
t∑

i=0

ai · 10i ≡
t∑

i=0

ai (mod 9), as

claimed.
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Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9

Corollary 6.46. Test for Divisibility by 9).
An integer is a multiple of 9 if and only if the sum of its decimal digits is a
multiple of 9.

Proof. First notice that we can assume without loss of generality that the
given integer is nonnegative.

Suppose that a ≡ b (mod m) and m | a. Then by Note 6.4.A a = b + mk1

for some k1 ∈ Z, and a = mk2 for some k2 ∈ Z. Therefore
b = a−mk1 = mk2 −mk1 = m(k2 − k1) and hence m | b. Since
congruence modulo m is symmetric by Theorem 6.41, then we have

If a ≡ b (mod m), then m | a ⇔ m | b.

Applying this with m = 9 to
∑t

i=0 ai · 10i ≡
∑t

i=0 ai (mod 9), which holds
by Theorem 6.45, we have that 9 divides n =

∑t
i=1 ai · 10i if and only if 9

divides
∑t

i=0 ai = a0 + a1 + · · · at , as claimed.
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Theorem 6.48. (Test for Divisibility by 11).
An integer n with decimal representation n = atat−1 . . . a0 is divisible by 11
if and only if the number at − at−1 + at−2− · · · ± a1∓ a0 is divisible by 11.

Proof. Now n = atat−1 . . . a0 means n =
t∑

i=0

ai · 10i . Since 10 ≡ −1

(mod 11), then by Corollary 6.43 (the multiplicative part) 10i ≡ (−1)i

(mod 11) for all i ≥ 0 and ai · 10i ≡ (−1)iai (mod 11), and by Corollary

6.42 (the additive part)
t∑

i=0

ai · 10i ≡
t∑

i=0

(−1)iai (mod 11).

We saw in the

proof of Corollary 6.47 that

If a ≡ b (mod m), then m | a ⇔ m | b,

so with m = 11 we have that 11 divides n =
∑t

i=0 ai · 10i if and only if 11
divides

∑t
i=0(−1)iai = ±(at − at−1 + at−2 = · · · ± a0), as claimed.
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