Mathematical Reasoning

Chapter 6. Number Theory

6.5. Introduction to Euler's Function—Proofs of Theorems

Mathematical Reasoning

March 1, 2022 1 /

()

Mathematical Reason

March 1, 2022

2 /

Theorem 6.53

Theorem 6.52

Theorem 6.52. Euler's Theorem.

Suppose m is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $S=\{y\mid 1\leq y\leq m \text{ and } (y,m)=1\}=\{a_1,a_2,\ldots,a_{\varphi(m)}\}.$ By Theorem 6.26 any prime divisor of xa_i must divide either x or a_i , but both x and a_i are relatively prime to m, so $(xa_i,m)=1$ for each i with $1\leq i\leq \varphi(m).$ From the Division Algorithm (Theorem 6.17) we have $xa_i=mq+r\equiv r\pmod m$ for some r satisfying $0\leq r< m$. Now if $(r,m)=k\not=1$, the $k\mid xa_i$ but this contradicts the fact that $(xa_i,m)=1$ as shown above. So we must have (r,m)=1 and hence $r\in S$; that is, $r=a_j$ for some j with $1\leq j\leq \varphi(m).$ Since each a_i satisfies $1\leq a_i\leq m$, then no two elements $a_1,a_2,\ldots,a_{\varphi(m)}$ are congruent modulo m. So for $i_1\neq i_2$ with $1\leq i_1,i_2\leq \varphi(m)$ we have $a_{i_1}\not\equiv a_{i_2}\pmod m$. Hence, because (x,m)=1 by hypothesis, the contrapositive of the Cancellation Law (Lemma 6.51(ii)) implies that $xa_{i_1}\not\equiv xa_{i_2}\pmod m$. That is, the integers $xa_1,xa_2,\ldots,xa_{\varphi(m)}$ are congruent modulo m to different elements of S.

Lemma 6.51

Lemma 6.51.

- (i) If $m \mid ab$ and (m, a) = 1, then $m \mid b$.
- (ii) (The Cancellation Law.) If $ax \equiv ay \pmod{m}$ and (a, m) = 1, then $x \equiv y \pmod{m}$.
- **Proof.** (i) Since $m \mid ab$, we can write ab = mc. Since (a, m) = 1 by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that ax + my = (a, m) = 1. Multiplying both sides of this equation by b gives b = abx + mby = m(cx + by), so that $m \mid b$ as claimed.
- (ii) Since $ax \equiv ay \pmod{m}$ by hypothesis, then (by Definition 6.37) $m \mid a(x y)$. Since (a, m) = 1 by hypothesis, the part (i) implies that $m \mid (x y)$, and so $x \equiv y \pmod{m}$ as claimed.

Theorem 6

Theorem 6.52 (continued)

Theorem 6.52. Euler's Theorem.

Suppose m is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof (continued). So we have a system of $\varphi(m)$ congruences:

$$xa_1 \equiv a_{j_1} \pmod{m}, \ xa_2 \equiv a_{j_2} \pmod{m}, \ \dots, \ xa_{\varphi(m)} \equiv a_{j_{\varphi(m)}} \pmod{m}$$

where each $a_i \in S$ appears exactly once on each side of this list. By Corollary 6.43, the product of the left-hand sides of these congruences is congruent modulo m to the product of the right hand sides:

$$x^{\varphi(m)}\prod_{i=1}^{\varphi(m)}a_i=\prod_{i=1}^{\varphi(m)}a_m \pmod{m}$$
. But since each a_i is relatively prime to

m, then $\prod_{i=1}^{\varphi(m)} a_i$ is also relatively prime to m. The Cancellation Law (Lemma 6.51(ii)) then implies that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as claimed.

Mathematical Reasoning March 1, 2022 4 / 6 () Mathematical Reasoning March 1, 2022 5

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem.

If p is prime and (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. This follows from Euler's Theorem (Theorem 6.52) with m = p, because $\varphi(p) = p - 1$ by Example 6.50.

() Mathematical Reasoning March 1, 2022 6 / 6