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Lemma 6.51

Lemma 6.51

Lemma 6.51.

(i) If m | ab and (m, a) = 1, then m | b.

(ii) (The Cancellation Law.) If ax ≡ ay (mod m and
(a,m) = 1, then x ≡ y (mod m).

Proof. (i) Since m | ab, we can write ab = mc . Since (a,m) = 1 by
hypothesis, then by Corollary 6.21 we know that there are integers x and y
such that ax + my = (a,m) = 1. Multiplying both sides of this equation
by b gives b = abx + mby = m(cx + by), so that m | b as claimed.

(ii) Since ax ≡ ay (mod m) by hypothesis, then (by Definition 6.37)
m | a(x − y). Since (a,m) = 1 by hypothesis, the part (i) implies that
m | (x − y), and so x ≡ y (mod m) as claimed.
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Theorem 6.52

Theorem 6.52. Euler’s Theorem.
Suppose m is positive and (x ,m) = 1. Then xϕ(m) ≡ 1 (mod m).

Proof. Let S = {y | 1 ≤ y ≤ m and (y ,m) = 1} = {a1, a2, . . . , aϕ(m)}.
By Theorem 6.26 any prime divisor of xai must divide either x or ai , but
both x and ai are relatively prime to m, so (xai ,m) = 1 for each i with
1 ≤ i ≤ ϕ(m). From the Division Algorithm (Theorem 6.17) we have
xai = mq + r ≡ r (mod m) for some r satisfying 0 ≤ r < m.

Now if
(r ,m) = k 6= 1, the k | xai but this contradicts the fact that (xai ,m) = 1
as shown above. So we must have (r ,m) = 1 and hence r ∈ S ; that is,
r = aj for some j with 1 ≤ j ≤ ϕ(m). Since each ai satisfies 1 ≤ ai ≤ m,
then no two elements a1, a2, . . . , aϕ(m) are congruent modulo m. So for
i1 6= i2 with 1 ≤ i1, i2 ≤ ϕ(m) we have ai1 6≡ ai2 (mod m). Hence, because
(x ,m) = 1 by hypothesis, the contrapositive of the Cancellation Law
(Lemma 6.51(ii)) implies that xai1 6≡ xai2 (mod m). That is, the integers
xa1, xa2, . . . , xaϕ(m) are congruent modulo m to different elements of S .
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Theorem 6.52

Theorem 6.52 (continued)

Theorem 6.52. Euler’s Theorem.
Suppose m is positive and (x ,m) = 1. Then xϕ(m) ≡ 1 (mod m).

Proof (continued). So we have a system of ϕ(m) congruences:

xa1 ≡ aj1 (mod m), xa2 ≡ aj2 (mod m), . . . , xaϕ(m) ≡ ajϕ(m)
(mod m)

where each ai ∈ S appears exactly once on each side of this list. By
Corollary 6.43, the product of the left-hand sides of these congruences is
congruent modulo m to the product of the right hand sides:

xϕ(m)

ϕ(m)∏
i=1

ai =

ϕ(m)∏
i=1

am (mod m). But since each ai is relatively prime to

m, then
∏ϕ(m)

i=1 ai is also relatively prime to m. The Cancellation Law
(Lemma 6.51(ii)) then implies that xϕ(m) ≡ 1 (mod m), as claimed.
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Corollary 6.53. Fermat’s Theorem/Fermat’s Little Theorem

Corollary 6.53. Fermat’s Theorem/Fermat’s Little Theorem

Corollary 6.53. Fermat’s Theorem/Fermat’s Little Theorem.
If p is prime and (a, p) = 1, then ap−1 ≡ 1 (mod p).

Proof. This follows from Euler’s Theorem (Theorem 6.52) with m = p,
because ϕ(p) = p − 1 by Example 6.50.
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