Mathematical Reasoning

Chapter 6. Number Theory

6.5. Introduction to Euler's Function-Proofs of Theorems

Table of contents

(1) Lemma 6.51
(2) Theorem 6.52

(3) Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Lemma 6.51

Lemma 6.51.

(i) If $m \mid a b$ and $(m, a)=1$, then $m \mid b$.
(ii) (The Cancellation Law.) If $a x \equiv a y(\bmod m$ and $(a, m)=1$, then $x \equiv y(\bmod m)$.

Proof. (i) Since $m \mid a b$, we can write $a b=m c$. Since $(a, m)=1$ by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that $a x+m y=(a, m)=1$. Multiplying both sides of this equation by b gives $b=a b x+m b y=m(c x+b y)$, so that $m \mid b$ as claimed.

Lemma 6.51

Lemma 6.51.

(i) If $m \mid a b$ and $(m, a)=1$, then $m \mid b$.
(ii) (The Cancellation Law.) If $a x \equiv a y(\bmod m$ and $(a, m)=1$, then $x \equiv y(\bmod m)$.

Proof. (i) Since $m \mid a b$, we can write $a b=m c$. Since $(a, m)=1$ by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that $a x+m y=(a, m)=1$. Multiplying both sides of this equation by b gives $b=a b x+m b y=m(c x+b y)$, so that $m \mid b$ as claimed.
(ii) Since $a x \equiv$ ay $(\bmod m)$ by hypothesis, then (by Definition 6.37) $m \mid a(x-y)$. Since $(a, m)=1$ by hypothesis, the part (i) implies that $m \mid(x-y)$, and so $x \equiv y(\bmod m)$ as claimed.

Lemma 6.51

Lemma 6.51.

(i) If $m \mid a b$ and $(m, a)=1$, then $m \mid b$.
(ii) (The Cancellation Law.) If $a x \equiv a y(\bmod m$ and $(a, m)=1$, then $x \equiv y(\bmod m)$.

Proof. (i) Since $m \mid a b$, we can write $a b=m c$. Since $(a, m)=1$ by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that $a x+m y=(a, m)=1$. Multiplying both sides of this equation by b gives $b=a b x+m b y=m(c x+b y)$, so that $m \mid b$ as claimed.
(ii) Since $a x \equiv a y(\bmod m)$ by hypothesis, then (by Definition 6.37) $m \mid a(x-y)$. Since $(a, m)=1$ by hypothesis, the part (i) implies that $m \mid(x-y)$, and so $x \equiv y(\bmod m)$ as claimed.

Theorem 6.52

Theorem 6.52. Euler's Theorem.
Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof. Let $S=\{y \mid 1 \leq y \leq m$ and $(y, m)=1\}=\left\{a_{1}, a_{2}, \ldots, a_{\varphi}(m)\right\}$. By Theorem 6.26 any prime divisor of $x a_{i}$ must divide either x or a_{i}, but both x and a_{i} are relatively prime to m, so $\left(x a_{i}, m\right)=1$ for each i with $1 \leq i \leq \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $x a_{i}=m q+r \equiv r(\bmod m)$ for some r satisfying $0 \leq r<m$.

Theorem 6.52

Theorem 6.52. Euler's Theorem.

Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof. Let $S=\{y \mid 1 \leq y \leq m$ and $(y, m)=1\}=\left\{a_{1}, a_{2}, \ldots, a_{\varphi(m)}\right\}$. By Theorem 6.26 any prime divisor of $x a_{i}$ must divide either x or a_{i}, but both x and a_{i} are relatively prime to m, so $\left(x a_{i}, m\right)=1$ for each i with $1 \leq i \leq \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $x a_{i}=m q+r \equiv r(\bmod m)$ for some r satisfying $0 \leq r<m$. Now if $(r, m)=k \neq 1$, the $k \mid x a_{j}$ but this contradicts the fact that $\left(x a_{i}, m\right)=1$ as shown above. So we must have $(r, m)=1$ and hence $r \in S$; that is, $r=a_{j}$ for some j with $1 \leq j \leq \varphi(m)$. Since each a_{i} satisfies $1 \leq a_{i} \leq m$, then no two elements $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_{1} \neq i_{2}$ with $1 \leq i_{1}, i_{2} \leq \varphi(m)$ we have $a_{i_{1}} \not \equiv a_{i_{2}}(\bmod m)$.

Theorem 6.52

Theorem 6.52. Euler's Theorem.

Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof. Let $S=\{y \mid 1 \leq y \leq m$ and $(y, m)=1\}=\left\{a_{1}, a_{2}, \ldots, a_{\varphi(m)}\right\}$. By Theorem 6.26 any prime divisor of $x a_{i}$ must divide either x or a_{i}, but both x and a_{i} are relatively prime to m, so $\left(x a_{i}, m\right)=1$ for each i with $1 \leq i \leq \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $x a_{i}=m q+r \equiv r(\bmod m)$ for some r satisfying $0 \leq r<m$. Now if $(r, m)=k \neq 1$, the $k \mid x a_{i}$ but this contradicts the fact that $\left(x a_{i}, m\right)=1$ as shown above. So we must have $(r, m)=1$ and hence $r \in S$; that is, $r=a_{j}$ for some j with $1 \leq j \leq \varphi(m)$. Since each a_{i} satisfies $1 \leq a_{i} \leq m$, then no two elements $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_{1} \neq i_{2}$ with $1 \leq i_{1}, i_{2} \leq \varphi(m)$ we have $a_{i_{1}} \not \equiv a_{i_{2}}(\bmod m)$. Hence, because $(x, m)=1$ by hypothesis, the contrapositive of the Cancellation Law (Lemma 6.51(ii)) implies that $x a_{i_{1}} \not \equiv x a_{i_{2}}(\bmod m)$. That is, the integers $x a_{1}, x a_{2}, \ldots, x a_{\varphi(m)}$ are congruent modulo m to different elements of S.

Theorem 6.52

Theorem 6.52. Euler's Theorem.

Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof. Let $S=\{y \mid 1 \leq y \leq m$ and $(y, m)=1\}=\left\{a_{1}, a_{2}, \ldots, a_{\varphi(m)}\right\}$. By Theorem 6.26 any prime divisor of $x a_{i}$ must divide either x or a_{i}, but both x and a_{i} are relatively prime to m, so $\left(x a_{i}, m\right)=1$ for each i with $1 \leq i \leq \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $x a_{i}=m q+r \equiv r(\bmod m)$ for some r satisfying $0 \leq r<m$. Now if $(r, m)=k \neq 1$, the $k \mid x a_{i}$ but this contradicts the fact that $\left(x a_{i}, m\right)=1$ as shown above. So we must have $(r, m)=1$ and hence $r \in S$; that is, $r=a_{j}$ for some j with $1 \leq j \leq \varphi(m)$. Since each a_{i} satisfies $1 \leq a_{i} \leq m$, then no two elements $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_{1} \neq i_{2}$ with $1 \leq i_{1}, i_{2} \leq \varphi(m)$ we have $a_{i_{1}} \not \equiv a_{i_{2}}(\bmod m)$. Hence, because $(x, m)=1$ by hypothesis, the contrapositive of the Cancellation Law (Lemma 6.51(ii)) implies that $x a_{i_{1}} \not \equiv x a_{i_{2}}(\bmod m)$. That is, the integers $x a_{1}, x a_{2}, \ldots, x a_{\varphi(m)}$ are congruent modulo m to different elements of S.

Theorem 6.52 (continued)

Theorem 6.52. Euler's Theorem.

Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof (continued). So we have a system of $\varphi(m)$ congruences:

$$
x a_{1} \equiv a_{j_{1}}(\bmod m), x a_{2} \equiv a_{j_{2}}(\bmod m), \ldots, x a_{\varphi(m)} \equiv a_{j_{\varphi(m)}}(\bmod m)
$$

where each $a_{i} \in S$ appears exactly once on each side of this list. By Corollary 6.43, the product of the left-hand sides of these congruences is congruent modulo m to the product of the right hand sides:

$a_{m}(\bmod m)$. But since each a_{i} is relatively prime to
m, then $\prod_{i=1}^{\varphi(m)} a_{i}$ is also relatively prime to m. The Cancellation Law (Lemma $6.51(\mathrm{ii})$) then implies that $x^{\varphi(m)} \equiv 1(\bmod m)$, as claimed.

Theorem 6.52 (continued)

Theorem 6.52. Euler's Theorem.

Suppose m is positive and $(x, m)=1$. Then $x^{\varphi(m)} \equiv 1(\bmod m)$.
Proof (continued). So we have a system of $\varphi(m)$ congruences:

$$
x a_{1} \equiv a_{j_{1}}(\bmod m), x a_{2} \equiv a_{j_{2}}(\bmod m), \ldots, x a_{\varphi(m)} \equiv a_{j_{\varphi(m)}}(\bmod m)
$$

where each $a_{i} \in S$ appears exactly once on each side of this list. By Corollary 6.43, the product of the left-hand sides of these congruences is congruent modulo m to the product of the right hand sides:
$x^{\varphi(m)} \prod_{i=1}^{\varphi(m)} a_{i}=\prod_{i=1}^{\varphi(m)} a_{m}(\bmod m)$. But since each a_{i} is relatively prime to
m, then $\prod_{i=1}^{\varphi(m)} a_{i}$ is also relatively prime to m. The Cancellation Law (Lemma $6.51(\mathrm{ii})$) then implies that $x^{\varphi(m)} \equiv 1(\bmod m)$, as claimed.

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem. If p is prime and $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. This follows from Euler's Theorem (Theorem 6.52) with $m=p$, because $\varphi(p)=p-1$ by Example 6.50.

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem.
If p is prime and $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Proof. This follows from Euler's Theorem (Theorem 6.52) with $m=p$, because $\varphi(p)=p-1$ by Example 6.50.

