Mathematical Reasoning

Chapter 6. Number Theory 6.5. Introduction to Euler's Function—Proofs of Theorems

3 Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Lemma 6.51

Lemma 6.51.

Proof. (i) Since $m \mid ab$, we can write ab = mc. Since (a, m) = 1 by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that ax + my = (a, m) = 1. Multiplying both sides of this equation by b gives b = abx + mby = m(cx + by), so that $m \mid b$ as claimed.

Lemma 6.51

Lemma 6.51.

(i) If
$$m \mid ab$$
 and $(m, a) = 1$, then $m \mid b$.
(ii) (The Cancellation Law) If $ax = ax$ (me

(ii) (The Cancellation Law.) If
$$ax \equiv ay \pmod{m}$$
 and $(a, m) = 1$, then $x \equiv y \pmod{m}$.

Proof. (i) Since $m \mid ab$, we can write ab = mc. Since (a, m) = 1 by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that ax + my = (a, m) = 1. Multiplying both sides of this equation by b gives b = abx + mby = m(cx + by), so that $m \mid b$ as claimed.

(ii) Since $ax \equiv ay \pmod{m}$ by hypothesis, then (by Definition 6.37) $m \mid a(x - y)$. Since (a, m) = 1 by hypothesis, the part (i) implies that $m \mid (x - y)$, and so $x \equiv y \pmod{m}$ as claimed.

Lemma 6.51

Lemma 6.51.

(i) If
$$m \mid ab$$
 and $(m, a) = 1$, then $m \mid b$.

(ii) **(The Cancellation Law.)** If
$$ax \equiv ay \pmod{m}$$
 and $(a, m) = 1$, then $x \equiv y \pmod{m}$.

Proof. (i) Since $m \mid ab$, we can write ab = mc. Since (a, m) = 1 by hypothesis, then by Corollary 6.21 we know that there are integers x and y such that ax + my = (a, m) = 1. Multiplying both sides of this equation by b gives b = abx + mby = m(cx + by), so that $m \mid b$ as claimed.

(ii) Since $ax \equiv ay \pmod{m}$ by hypothesis, then (by Definition 6.37) $m \mid a(x - y)$. Since (a, m) = 1 by hypothesis, the part (i) implies that $m \mid (x - y)$, and so $x \equiv y \pmod{m}$ as claimed.

Theorem 6.52. Euler's Theorem. Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $S = \{y \mid 1 \le y \le m \text{ and } (y, m) = 1\} = \{a_1, a_2, \dots, a_{\varphi(m)}\}$. By Theorem 6.26 any prime divisor of xa_i must divide either x or a_i , but both x and a_i are relatively prime to m, so $(xa_i, m) = 1$ for each i with $1 \le i \le \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $xa_i = mq + r \equiv r \pmod{m}$ for some r satisfying $0 \le r < m$.

Theorem 6.52. Euler's Theorem.

Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $S = \{y \mid 1 \le y \le m \text{ and } (y, m) = 1\} = \{a_1, a_2, \ldots, a_{\varphi(m)}\}$. By Theorem 6.26 any prime divisor of xa_i must divide either x or a_i , but both x and a_i are relatively prime to m, so $(xa_i, m) = 1$ for each i with $1 \le i \le \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $xa_i = mq + r \equiv r \pmod{m}$ for some r satisfying $0 \le r < m$. Now if $(r, m) = k \ne 1$, the $k \mid xa_i$ but this contradicts the fact that $(xa_i, m) = 1$ as shown above. So we must have (r, m) = 1 and hence $r \in S$; that is, $r = a_j$ for some j with $1 \le j \le \varphi(m)$. Since each a_i satisfies $1 \le a_i \le m$, then no two elements $a_1, a_2, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_1 \ne i_2$ with $1 \le i_1, i_2 \le \varphi(m)$ we have $a_{i_1} \ne a_{i_2} \pmod{m}$.

Theorem 6.52. Euler's Theorem.

Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $S = \{y \mid 1 \le y \le m \text{ and } (y, m) = 1\} = \{a_1, a_2, \dots, a_{\omega(m)}\}.$ By Theorem 6.26 any prime divisor of xa_i must divide either x or a_i , but both x and a_i are relatively prime to m, so $(xa_i, m) = 1$ for each i with $1 \le i \le \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $xa_i = mq + r \equiv r \pmod{m}$ for some r satisfying $0 \leq r < m$. Now if $(r, m) = k \neq 1$, the k | xa_i but this contradicts the fact that $(xa_i, m) = 1$ as shown above. So we must have (r, m) = 1 and hence $r \in S$; that is, $r = a_i$ for some j with $1 \le j \le \varphi(m)$. Since each a_i satisfies $1 \le a_i \le m$, then no two elements $a_1, a_2, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_1 \neq i_2$ with $1 \leq i_1, i_2 \leq \varphi(m)$ we have $a_{i_1} \not\equiv a_{i_2} \pmod{m}$. Hence, because (x, m) = 1 by hypothesis, the contrapositive of the Cancellation Law (Lemma 6.51(ii)) implies that $xa_{i_1} \not\equiv xa_{i_2} \pmod{m}$. That is, the integers $xa_1, xa_2, \ldots, xa_{\omega(m)}$ are congruent modulo *m* to different elements of *S*.

Theorem 6.52. Euler's Theorem.

Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof. Let $S = \{y \mid 1 \le y \le m \text{ and } (y, m) = 1\} = \{a_1, a_2, \dots, a_{\varphi(m)}\}.$ By Theorem 6.26 any prime divisor of xa_i must divide either x or a_i , but both x and a_i are relatively prime to m, so $(xa_i, m) = 1$ for each i with $1 \le i \le \varphi(m)$. From the Division Algorithm (Theorem 6.17) we have $xa_i = mq + r \equiv r \pmod{m}$ for some r satisfying $0 \leq r < m$. Now if $(r, m) = k \neq 1$, the k | xa_i but this contradicts the fact that $(xa_i, m) = 1$ as shown above. So we must have (r, m) = 1 and hence $r \in S$; that is, $r = a_i$ for some j with $1 \le j \le \varphi(m)$. Since each a_i satisfies $1 \le a_i \le m$, then no two elements $a_1, a_2, \ldots, a_{\varphi(m)}$ are congruent modulo m. So for $i_1 \neq i_2$ with $1 \leq i_1, i_2 \leq \varphi(m)$ we have $a_{i_1} \not\equiv a_{i_2} \pmod{m}$. Hence, because (x, m) = 1 by hypothesis, the contrapositive of the Cancellation Law (Lemma 6.51(ii)) implies that $xa_{i_1} \not\equiv xa_{i_2} \pmod{m}$. That is, the integers $xa_1, xa_2, \ldots, xa_{\omega(m)}$ are congruent modulo *m* to different elements of *S*.

Theorem 6.52 (continued)

Theorem 6.52. Euler's Theorem. Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof (continued). So we have a system of $\varphi(m)$ congruences:

$$xa_1 \equiv a_{j_1} \pmod{m}, \ xa_2 \equiv a_{j_2} \pmod{m}, \ \dots, \ xa_{\varphi(m)} \equiv a_{j_{\varphi(m)}} \pmod{m}$$

where each $a_i \in S$ appears exactly once on each side of this list. By Corollary 6.43, the product of the left-hand sides of these congruences is congruent modulo m to the product of the right hand sides:

 $x^{\varphi(m)} \prod_{i=1}^{\varphi(m)} a_i = \prod_{i=1}^{\varphi(m)} a_m \pmod{m}$. But since each a_i is relatively prime to

m, then $\prod_{i=1}^{\varphi(m)} a_i$ is also relatively prime to *m*. The Cancellation Law (Lemma 6.51(ii)) then implies that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as claimed.

Theorem 6.52 (continued)

Theorem 6.52. Euler's Theorem. Suppose *m* is positive and (x, m) = 1. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

Proof (continued). So we have a system of $\varphi(m)$ congruences:

$$xa_1\equiv a_{j_1} \pmod{m}, \ xa_2\equiv a_{j_2} \pmod{m}, \ \ldots, \ xa_{\varphi(m)}\equiv a_{j_{\varphi(m)}} \pmod{m}$$

where each $a_i \in S$ appears exactly once on each side of this list. By Corollary 6.43, the product of the left-hand sides of these congruences is congruent modulo *m* to the product of the right hand sides:

 $x^{\varphi(m)}\prod_{i=1}^{\varphi(m)}a_i = \prod_{i=1}^{\varphi(m)}a_m \pmod{m}$. But since each a_i is relatively prime to m, then $\prod_{i=1}^{\varphi(m)}a_i$ is also relatively prime to m. The Cancellation Law (Lemma 6.51(ii)) then implies that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as claimed.

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem. If p is prime and (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. This follows from Euler's Theorem (Theorem 6.52) with m = p, because $\varphi(p) = p - 1$ by Example 6.50.

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem

Corollary 6.53. Fermat's Theorem/Fermat's Little Theorem. If *p* is prime and (a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. This follows from Euler's Theorem (Theorem 6.52) with m = p, because $\varphi(p) = p - 1$ by Example 6.50.