Mathematical Reasoning

Chapter 6. Number Theory

6.6. The Inclusion-Exclusion Principle and Euler's Function—Proofs of Theorems

Mathematical Reasoning

February 26, 2022

Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle.

Let S be a finite set and suppose A_1, A_2, \ldots, A_n are subsets of S. Define $S_0 = |S|$ and, for $1 \le k \le n$, define

$$S_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|.$$

Then $|A'_1 \cap A'_2 \cap \cdots \cap A'_n| = \sum_{k=0}^n (-1)^k S_k$.

Proof. DeMorgan's Law (Theorem 2.16(g) and induction) states that $(\bigcup_{i=1}^n A_i)' = \bigcap_{i=1}^n A_i'$. That is (with S as the universal set), $A_1' \cap A_2' \cap \cdots \cap A_n' = S - (\bigcup_{i=1}^n A_i)$. So $A_1' \cap A_2' \cap \cdots \cap A_n'$ and $(\bigcup_{i=1}^n A_i)$ are disjoint. Hence, by the Addition Rule (Theorem 4.14) we have

$$|A'_1 \cap A'_2 \cap \cdots \cap A'_n| + |\cup_{i=1}^n A_i| = |S|$$

or

$$|\cup_{i=1}^n A_i| = |S| - |A_1' \cap A_2' \cap \cdots \cap A_n'|.$$

Mathematical Reasoning

February 26, 2022 3 / 14

Corollary 6.57 (continued 1)

Proof (continued). ...

$$\begin{aligned} |\cup_{i=1}^{n} A_{i}| &= |S| - |A'_{1} \cap A'_{2} \cap \dots \cap A'_{n}| \\ &= \sum_{i=1}^{n} |A_{i}| - \left(\sum_{1 \leq i_{1} < i_{2} \leq n} |A_{i_{1}} \cap A_{i_{2}}|\right) \\ &+ \left(\sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}|\right) \\ &- \left(\sum_{1 \leq i_{1} < i_{2} < i_{3} < i_{4} \leq n} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}} \cap A_{i_{4}}|\right) + \dots \\ &+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \dots \cap A_{n}| \text{ by Theorem 6.56} \\ &= \sum_{k=1}^{n} (-1)^{k+1} S_{k} = -\sum_{k=1}^{n} (-1)^{k} S_{k}. \end{aligned}$$

Corollary 6.57 (continued 2)

Corollary 6.57. Inclusion-Exclusion Principle.

Let S be a finite set and suppose A_1, A_2, \ldots, A_n are subsets of S. Define $S_0 = |S|$ and, for $1 \le k \le n$, define

$$S_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|.$$

Then $|A'_1 \cap A'_2 \cap \cdots \cap A'_n| = \sum_{k=0}^n (-1)^k S_k$.

Proof (continued). ...

$$|\cup_{i=1}^n A_i| = |S| - |A'_1 \cap A'_2 \cap \cdots \cap A'_n| = -\sum_{k=1}^n (-1)^k S_k.$$

Since $S_0 = |S|$, then

$$|A_1' \cap A_2' \cap \cdots \cap A_n'| = |S| + \sum_{k=1}^n (-1)^k S_k = \sum_{k=0}^n (-1)^k S_k,$$

as claimed.

February 26, 2022

Theorem 6.59

Theorem 6.59. If *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{1 \leq i \leq r} \left(1 - \frac{1}{p_i} \right) = n \prod_{1 \leq i \leq r} \left(\frac{p_i - 1}{p_i} \right) = \prod_{1 \leq i \leq r} p_i^{\alpha_i - 1} \prod_{1 \leq i \leq r} (p_i - 1).$$

Moreover, if (m, n) = 1 then $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof. By Note 6.6.B, $\varphi(n) = |A'_1 \cap A'_2 \cap \cdots \cap A'_r|$ and by Note 6.6.C. $|A_{i_1}\cap A_{i_2}\cap\cdots\cap A_{i_k}|=rac{n+1}{p_{i_1}p_{i_2}\cdots p_{i_k}}$ for all $1\leq k\leq r$. So by the Inclusion-Exclusion Principle (Corollary 6.57) with $S = \mathbb{N}_n$, we have

$$\varphi(n) = |A'_1 \cap A'_2 \cap \cdots \cap A'_r| = \sum_{k=0}^r (-1)^k S_k$$

$$=\sum_{k=0}^r (-1)^k \left(\sum_{1\leq i_1< i_2< \cdots < i_k\leq r} |A_{i_1}\cap A_{i_2}\cap \cdots \cap A_{i_k}|\right) \ldots$$

Mathematical Reasoning

February 26, 2022

Theorem 6.59 (continued 2)

Theorem 6.59. If *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{1 \leq i \leq r} \left(1 - \frac{1}{p_i} \right) = n \prod_{1 \leq i \leq r} \left(\frac{p_i - 1}{p_i} \right) = \prod_{1 \leq i \leq r} p_i^{\alpha_i - 1} \prod_{1 \leq i \leq r} (p_i - 1).$$

Moreover, if (m, n) = 1 then $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof (continued). ...

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right).$$

Since $1 - \frac{1}{p_i} = \frac{p_i - 1}{p_i}$ for each $1 \le i \le r$ then the second equality holds. Since $\frac{p_i-1}{p_i}=p_i^{-1}(p_i-1)$ and $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$ then the third equality holds.

Theorem 6.59 (continued 1)

Proof (continued). ...

$$\varphi(n) = \sum_{k=0}^{r} (-1)^k \frac{n}{p_{i_1} p_{i_2} \cdots p_{i_k}}$$
 by Note 6.6.C.

It is shown in Exercise 6.6.A (by induction) that

$$\sum_{k=0}^{r} (-1)^{k} \frac{1}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} = 1 - \sum_{1 \leq i_{1} \leq r} \frac{1}{p_{i_{1}}} + \sum_{1 \leq i_{1} < i_{2} \leq r} \frac{1}{p_{i_{1}} p_{i_{2}}}$$
$$- \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq r} \frac{1}{p_{i_{1}} p_{i_{2}} p_{i_{3}}} + \dots + (-1)^{r} \frac{1}{p_{1} p_{2} \cdots p_{r}}$$
$$= \left(1 - \frac{1}{p_{1}}\right) \left(1 - \frac{1}{p_{2}}\right) \cdots \left(1 - \frac{1}{p_{r}}\right) \dots$$

Mathematical Reasoning

February 26, 2022 7 / 14

Theorem 6.59 (continued 3)

Theorem 6.59. If *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{1 \leq i \leq r} \left(1 - \frac{1}{p_i} \right) = n \prod_{1 \leq i \leq r} \left(\frac{p_i - 1}{p_i} \right) = \prod_{1 \leq i \leq r} p_i^{\alpha_i - 1} \prod_{1 \leq i \leq r} (p_i - 1).$$

Moreover, if (m, n) = 1 then $\varphi(mn) = \varphi(m)\varphi(n)$.

Proof (continued). If (m, n) = 1 then the standard factorization of m is $q_1^{\beta_1}q_2^{\beta_2}\cdots q_s^{\beta_s}$ for primes q_i for $1\leq i\leq s$, and $p_i\neq q_i$ for all $1\leq i\leq r$ and $1 \le j \le s$. So by the third equality,

$$\varphi(\mathit{mn}) = \prod_{1 < i < r} p_i^{\alpha_i - 1} \prod_{1 < i < r} (p_i - 1) \prod_{1 < j < s} q_i^{\beta_j - 1} \prod_{1 < j < s} (q_j - 1) = \varphi(\mathit{m})\varphi(\mathit{n}),$$

as claimed.

Mathematical Reasoning February 26, 2022

Theorem 6.63

 $\lim_{n\to\infty}\varphi(n)=\infty.$

then as shown in the proof of Theorem 6.62,

for all prime $p_i > 2$

and $\alpha_i \geq 1$ for some $1 \leq i \leq r$. Then

Theorem 6.62. If n > 2 then $\varphi(n)$ is even.

Proof. First, suppose n is a power of 2, say $n=2^k$ with $k \ge 2$. Then by Corollary 6.60, $\varphi(2^k) = 2^{k-1}(2-1) = 2^{k-1}$ where $k-1 \ge 1$. That is, $\varphi(n)$ is even.

If n is not a power of 2, then $n=p^km$ for some odd prime $p,\ k\geq 1$, and (p,m)=1. Then

$$\varphi(n) = \varphi(p^k m) = \varphi(p^k)\varphi(m)$$
 by Theorem 6.59
$$= p^{k-1}(p-1)\varphi(m)$$
 by Corollary 6.60.

Since p-1 is even, then $\varphi(n)$ is even in this case also, as claimed.

Mathematical Reasoning

 $\varphi(n) = \varphi(2^{\alpha_0})\varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\cdots\varphi(p_r^{\alpha_r}) \text{ by Theorem 6.59}$ $= 2^{\alpha_0-1}p_1^{\alpha_1-1}(p_1^{\alpha_1}-1)p_2^{\alpha_2-1}(p_2^{\alpha_2}-1)\cdots p_r^{\alpha_r-1}(p_1^{\alpha_1}-1)$ by Corollary 6.60 $> 2^{\alpha_0-1}p_1^{\alpha_1-1/2}p_2^{\alpha_2-1/2}\cdots p_r^{\alpha_r-1/2} \text{ since } p_i-1 \ge \sqrt{p_i}$

Theorem 6.63. If n is a positive integer, then $\varphi(n) > \sqrt{n}/2$. Hence,

Proof. If n = 1, then $\varphi(1) = 1 > \sqrt{1/2} = 1/2$. If $n = 2^k$ is a power of 2,

 $\varphi(2^k)=2^{k-1}>2^{k/2-1}=\sqrt{2^k}/2$. If n>1 is not a power of 2, the n has a standard factorization of the form $n=2^{\alpha_0}p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$, with $\alpha_0\geq 0$

Mathematical Reasoning

TI 6.6

Theorem 6.63 (continued)

Theorem 6.63. If n is a positive integer, then $\varphi(n) > \sqrt{n}/2$. Hence, $\lim_{n \to \infty} \varphi(n) = \infty$.

Proof (continued). ...

$$\begin{array}{lll} \varphi(n) &>& 2^{\alpha_0-1} p_1^{\alpha_1-1/2} p_2^{\alpha_2-1/2} \cdots p_r^{\alpha_r-1/2} \\ &\geq & 2^{\alpha_0-1} p_1^{\alpha_1/2} p_2^{\alpha_2/2} \cdots p_r^{\alpha_r/2} \text{ since } \alpha_i - 1/2 \geq \alpha_i/2 \\ && \text{because } \alpha_i \geq 1 \text{ for } 1 \leq i \leq r \\ &\geq & 2^{\alpha_0/2-1} p_1^{\alpha_1/2} p_2^{\alpha_2/2} \cdots p_r^{\alpha_r/2} \text{ since } \alpha_0/2 - 1 \leq \alpha_0 - 1 \\ &= & \sqrt{n}/2. \end{array}$$

So $\varphi(n) > \sqrt{n}/2$ in all cases, as claimed.

Theorem 6.64

Theorem 6.64. If $m = 2 \cdot 5^{2k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n) = m$.

Proof. ASSUME that there is some n such that $\varphi(n) = 2 \cdot 5^{2k}$. Let the standard factorization of n be $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$. Then by Theorem 6.59 and Corollary 6.60,

$$\varphi(n) = p_1^{\alpha_1-1}p_2^{\alpha_2-1}\cdots p_r^{\alpha_r-1}(p_1-1)(p_2-1)\cdots (p_r-1).$$
 (*)

Now for each odd prime p_i, p_i-1 is even. But since $\varphi(n)=2\cdot 5^{2k}$, then only one p_i can be an odd prime. Moreover, if $n=2^\ell$ then $\varphi(n)=2^{\ell-1}$ as seen in the proof of Theorem 6.62, but then $\varphi(n)$ lacks the power of 5 so this cannot be the case. That is, n must be of the form $n=2^\alpha p^\beta$ where p is an odd prime, $\beta\geq 1$, and $\alpha\in\{0,1\}$; for if $\alpha\geq 2$ then $\varphi(n)$ includes a factor of $2^{\alpha-1}$ and another factor of 2 from p-1, by (*) in which case $\varphi(n)$ has a factor of 4.

Mathematical Reasoning February 26, 2022 12

February 26, 2022

Mathematical Reasoning February 2

February 26, 2022 13 / 14

February 26, 2022 11 / 14

Theorem 6.64 (continued)

Theorem 6.64. If $m = 2 \cdot 5^{2k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n) = m$.

Proof (continued). Hence

$$\varphi(n) = \varphi(2^{\alpha}p^{\beta}) = \varphi(2^{\alpha})\varphi(p^{\beta}) = (1)p^{\beta-1}(p-1) = 2 \cdot 5^{2k}.$$

Now if $\beta>1$ then p=5 (since the only prime divisors of $2\cdot 5^{2k}$ are 2 and 5, and we know p is an odd prime). This gives p-1=4, but then we have too many factors of 2 in $\varphi(n)$. So we must have $\beta=1$, and then $\varphi(n)=p^{\beta-1}(p-1)=p-1=2\cdot 5^{2k}$, or $p=1+2\cdot 5^{2k}$. But $5^{2k}=(25)^k\equiv 1\pmod 3$ (since $25\equiv 1\pmod 3$) and by Corollary 6.43), so $2\cdot 5^{2k}\equiv 2\pmod 3$ (also by Corollary 6.43). Therefore, $p=1+2\cdot 5^{2k}\equiv 0\pmod 3$. But the only prime which is divisible by 3 is 3 itself, so we must have p=3. Since $n=2^\alpha\cdot p^\beta$ and we have that $\alpha\in\{0,1\},\ \beta=1$, and p=3 then we conclude that n=3 or n=4. But $\varphi(3)=\varphi(4)=2\neq 2\cdot 5^{2k}$ where $k\in\mathbb{N}$, a CONTRADICTION. So the assumption that $\varphi(n)=2\cdot 5^{2k}$ for some n is false, and the claim holds. \square

()	Mathematical Reasoning	February 26, 2022	14 /