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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57 (continued 1)

Proof (continued). ...

ULLAl = [S|=|AiNAN---NA]
n
= YIAI- | Y [AnAy
i=1 1<ii<i<n

+ E: |A, N A, NA;

1<i<ih<ia<n

1<i<ih<i3<ig<n

+(—1)""HA; N Ay N --- Ay| by Theorem 6.56
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n n
— k+1 _ k
= D (DS == (-1)*Sk.
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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose A;, Ay, ..., A, are subsets of S. Define
So =|5] and, for 1 < k < n, define

Sk= Y.

1< <ip<-<ik<n

Then [ALNA, N NAL =>7_o(=1)kS.

|A,’10A,‘20"'0A

&L

Proof. DeMorgan’s Law (Theorem 2.16(g) and induction) states that
(U™, A)) =nNr AL Thatis (with S as the universal set),
AN A, M- NAL =S — (U, A). So A A, N - N A, and (U, A7)
are disjoint. Hence, by the Addition Rule (Theorem 4.14) we have

AL AN DAL+ UL AL = 1]
or

UL Al = [S]— AL N A0 1 A,
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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57 (continued 2)

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose A;, Ay, ..., A, are subsets of S. Define
So =|5] and, for 1 < k < n, define

Se= 2.
1<i<ip<-<ix<n

Then [ALNA,N - NAL =37 (—1)%S.
Proof (continued). ...

‘AhfﬁAbfWH-rWA@L

U1 Al = (S| = AL N AN NAL = = > (—1) Sk
k=1
Since Sp = |S], then
AL NA N DA =18+ Y (=D Se= ) (-1)*Sk,
k=1 k=0

as claimed. O
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Theorem 6.59 Theorem 6.59

Theorem 6.59 Theorem 6.59 (continued 1)
Theorem 6.59. If n has standard factorization p*p5? - - - pfr, then Proof (continued). ...
pi — 1 ai—1
_nH<1__>:nH<—)=Hp,» I (- ). ’ "
1<i<r 1<i<r Pi 1<i<r 1<i<r o(n) = Z(—l)k— by Note 6.6.C.
k=0 pl1 p12 t P/

Moreover, if (m, n) =1 then p(mn) = ¢(m)p(n).
Proof. By Note 6.6.B, p(n) = |A|NA,N---NA.| and by Note 6.6.C,

Ay NA,N---NA,|=————forall 1< k<r. So by the r 1 1 1
n ‘ 2 . ik . /?I'lplé"'pfk . Z(_l)k—zl_ Z - Z
Inclusion-Exclusion Principle (Corollary 6.57) with S = N,, we have —o PirPiz **  Pi 1sher P 1T, PP
r
k
cp(n):|A'1ﬂA'2ﬂ---ﬂA’,|:Z(—1) Sk — Z 1 +...+(_1)’;
k=0 1<ii<ih<iz<r Piy Pi, Pi3 pPip2 - Pr
d 1 1 1
=) (1) > AL NA,N-NA L] ... :(1——) (1——)---(1--)...
. . P1 P2 Pr
k=0 1<ii<ip<---<ik<r
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Theorem 6.59 (continued 2) Theorem 6.59 (continued 3)

Theorem 6.59. If n has standard factorization py*p5? - - - pfr, then e

Theorem 6.59. If n has standard factorization p;" py? - - - pir, then

o =n I] (1-2) _nl<r’[<r<'9"1) -1 e e a-n T (-2) <o 1 (50) = Lo 11 -

1<i<r 1<i<r 1<i<r
Moreover, if (m, n) =1 then p(mn) = ¢(m)p(n). Moreover, if (m. n) = 1 then w(mn) = o(m)o(n)
Proof (continued).
( ) Proof (continued). If (m, n) =1 then the standard factorization of m is

(n) (1 1) <1 1) <1 1) q; q§2 - g% for primes q; for 1 < i < s, and pi # qj forall 1 </ <r and
o(n)=n(1-— - = - =

p1 P> pr 1 <j <'s. So by the third equality,
1 — 1 - _ 1 —1) =
Sincel — — = P for each 1 < j < r then the second equality holds. p(mn) = H pi" H 1) H a7 H 1) = @(m)e(n).
pll Pi 1<i<r 1<i<r 1<j<s 1<j<s
p—_ - P — 01 02 o . .
Since — =p; (pi—1) and n = pi*p5?--- p2 then the third equality as claimed. 0
holds.

Mathematical Reasoning February 26, 2022 8/ 14 Mathematical Reasoning February 26, 2022 9/ 14



Theorem 6.62

Theorem 6.62

Theorem 6.62. If n > 2 then ¢(n) is even.

Proof. First, suppose n is a power of 2, say n = 2¥ with k > 2. Then by
Corollary 6.60, ©(2k) = 2k=1(2 — 1) = 2k where k — 1 > 1. That is,
©(n) is even.

If nis not a power of 2, then n = pkm for some odd prime p, kK > 1, and
(p,m) =1. Then

p(n) = (p*m) = o(p*)e(m) by Theorem 6.59

= pk"Y(p — 1)p(m) by Corollary 6.60.

Since p — 1 is even, then ¢(n) is even in this case also, as claimed. O
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Theorem 6.63

Theorem 6.63 (continued)

Theorem 6.63. If n is a positive integer, then p(n) > \/n/2. Hence,
limp—o00 p(n) = 0.

Proof (continued). ...

_ —1/2 —1/2 r—1/2
p(n) > 200 lpiTl2pemt/2 part/

> 2a°_1p?1/2p§2/2 . -p?’/2 since aj — 1/2 > «;/2
because o; > 1for1 <i<r
2af’/2_1pf‘1/2p‘23‘2/2 - p2/? since ap/2—1<ap—1

— V2.

So ¢(n) > /n/2 in all cases, as claimed. O
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Theorem 6.63

Theorem 6.63. If n is a positive integer, then p(n) > \/n/2. Hence,
limp,—00 p(n) = 0.

Proof. If n =1, then (1) =1 > /1/2 =1/2. If n = 2k is a power of 2,
then as shown in the proof of Theorem 6.62,

@(2K) = 2k=1 > 2k/2=1 — \/2k /2 If n > 1 is not a power of 2, the n has
a standard factorization of the form n = 2% p p? ... p& with ag > 0
and o > 1 forsome 1 << r. Then

o(n) = 2% e(p)e(py?) - - @(pyr) by Theorem 6.59
200 pt1H(pft — 1)p52H(p5? — 1) - i (pft — 1)
by Corollary 6.60
> 2a0_1p?1—1/2p2ag—1/2_‘-p?lr—]./2

for all prime p; > 2

since p; — 1> /pi
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Theorem 6.64

Theorem 6.64. If m = 2 -5 with k € N, then there is no integer n such
that ¢(n) = m.

Proof. ASSUME that there is some n such that ¢(n) = 2-5%%. Let the
standard factorization of n be n = p{*p5? - - pfr. Then by Theorem 6.59
and Corollary 6.60,

p(n) =p tps2 e p2H(pr = 1)(p2 = 1) -+ (pr — 1). (x)

Now for each odd prime p;, p; — 1 is even. But since p(n) = 2 - 52, then
only one p; can be an odd prime. Moreover, if n = 2¢ then ¢(n) =2¢"1 as
seen in the proof of Theorem 6.62, but then ¢(n) lacks the power of 5 so
this cannot be the case. That is, n must be of the form n = 2%p? where p
is an odd prime, 8 > 1, and a € {0, 1}; for if a > 2 then ¢(n) includes a
factor of 22~ and another factor of 2 from p — 1, by (*) in which case
©(n) has a factor of 4.
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Theorem 6.64 (continued)

Theorem 6.64. If m = 2 -5 with k € N, then there is no integer n such
that ¢(n) = m.
Proof (continued). Hence

p(n) = 9(2°P") = p(2")p(p”) = (1)p" H(p—1) = 2-5°%.

Now if 3 > 1 then p =5 (since the only prime divisors of 2 - 52% are 2 and

5, and we know p is an odd prime). This gives p — 1 = 4, but then we
have too many factors of 2 in ¢(n). So we must have 3 =1, and then
en)=p" Y p—-1)=p—-1=2-5% 0or p=1+2-5% But

52k = (25)%k =1 (mod 3) (since 25 = 1 (mod 3) and by Corollary 6.43), so
252k =2 (mod 3) (also by Corollary 6.43). Therefore,
p=1+2-52=0 (mod 3). But the only prime which is divisible by 3 is 3
itself, so we must have p = 3. Since n = 2% - p” and we have that

a € {0,1}, =1, and p = 3 then we conclude that n =3 or n = 4. But
©(3) = p(4) = 2 # 2 - 52 where k € N, a CONTRADICTION. So the
assumption that ¢(n) = 2-5% for some n is false, and the claim holds. []
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