Mathematical Reasoning

Chapter 6. Number Theory

6.6. The Inclusion-Exclusion Principle and Euler's Function-Proofs of

Theorems

Introduction
to Mathematical
Structures
and Proofs
Second Edition

Table of contents

(1) Corollary 6.57. Inclusion-Exclusion Principle
(2) Theorem 6.59
(3) Theorem 6.62
(4) Theorem 6.63
(5) Theorem 6.64

Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of S. Define $S_{0}=|S|$ and, for $1 \leq k \leq n$, define

$$
S_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| .
$$

Then $\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|=\sum_{k=0}^{n}(-1)^{k} S_{k}$.
Proof. DeMorgan's Law (Theorem 2.16(g) and induction) states that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime}=\cap_{i=1}^{n} A_{i}^{\prime}$. That is (with S as the universal set),
$A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}=S-\left(\cup_{i=1}^{n} A_{i}\right)$. So $A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}$ and $\left(\cup_{i=1}^{n} A_{i}\right)$
are disjoint. Hence, by the Addition Rule (Theorem 4.14) we have

$$
\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|+\left|\cup_{i=1}^{n} A_{i}\right|=|S|
$$

or

$$
\left|\cup_{i=1}^{n} A_{i}\right|=|S|-\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right| .
$$

Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle.

Let S be a finite set and suppose $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of S. Define $S_{0}=|S|$ and, for $1 \leq k \leq n$, define

$$
S_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| .
$$

Then $\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|=\sum_{k=0}^{n}(-1)^{k} S_{k}$.
Proof. DeMorgan's Law (Theorem 2.16(g) and induction) states that $\left(\cup_{i=1}^{n} A_{i}\right)^{\prime}=\cap_{i=1}^{n} A_{i}^{\prime}$. That is (with S as the universal set), $A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}=S-\left(\cup_{i=1}^{n} A_{i}\right)$. So $A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}$ and $\left(\cup_{i=1}^{n} A_{i}\right)$ are disjoint. Hence, by the Addition Rule (Theorem 4.14) we have

$$
\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|+\left|\cup_{i=1}^{n} A_{i}\right|=|S|
$$

or

$$
\left|\cup_{i=1}^{n} A_{i}\right|=|S|-\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right| .
$$

Corollary 6.57 (continued 1)

Proof (continued).

$$
\begin{aligned}
\left|\cup_{i=1}^{n} A_{i}\right|= & |S|-\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right| \\
= & \sum_{i=1}^{n}\left|A_{i}\right|-\left(\sum_{1 \leq i_{1}<i_{2} \leq n}\left|A_{i_{1}} \cap A_{i_{2}}\right|\right) \\
& +\left(\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right|\right) \\
& -\left(\sum_{1 \leq i_{1}<i_{<i}<i_{3}<i_{4} \leq n} \mid A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}} \cap A_{i_{i} \mid}\right)+\cdots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots A_{n}\right| \text { by Theorem } 6.56 \\
= & \sum_{k=1}^{n}(-1)^{k+1} S_{k}=-\sum_{k=1}^{n}(-1)^{k} S_{k} .
\end{aligned}
$$

Corollary 6.57 (continued 2)

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of S. Define $S_{0}=|S|$ and, for $1 \leq k \leq n$, define

$$
S_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| .
$$

Then $\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|=\sum_{k=0}^{n}(-1)^{k} S_{k}$.
Proof (continued). ...

$$
\left|\cup_{i=1}^{n} A_{i}\right|=|S|-\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|=-\sum_{k=1}^{n}(-1)^{k} S_{k} .
$$

Since $S_{0}=|S|$, then

$$
\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{n}^{\prime}\right|=|S|+\sum_{k=1}^{n}(-1)^{k} S_{k}=\sum_{k=0}^{n}(-1)^{k} S_{k},
$$

as claimed.

Theorem 6.59

Theorem 6.59. If n has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then
$\varphi(n)=n \prod_{1 \leq i \leq r}\left(1-\frac{1}{p_{i}}\right)=n \prod_{1 \leq i \leq r}\left(\frac{p_{i}-1}{p_{i}}\right)=\prod_{1 \leq i \leq r} p_{i}^{\alpha_{i}-1} \prod_{1 \leq i \leq r}\left(p_{i}-1\right)$.
Moreover, if $(m, n)=1$ then $\varphi(m n)=\varphi(m) \varphi(n)$.
Proof. By Note 6.6.B, $\varphi(n)=\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{r}^{\prime}\right|$ and by Note 6.6.C, $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=\frac{n}{p_{i} p_{i} \cdots p_{i}}$ for all $1 \leq k \leq r$. So by the Inclusion-Exclusion Principle (Corollary 6.57) with $S=\mathbb{N}_{n}$, we have

$$
\varphi(n)=\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{r}^{\prime}\right|=\sum_{k=0}^{r}(-1)^{k} S_{k}
$$

Theorem 6.59

Theorem 6.59. If n has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then
$\varphi(n)=n \prod_{1 \leq i \leq r}\left(1-\frac{1}{p_{i}}\right)=n \prod_{1 \leq i \leq r}\left(\frac{p_{i}-1}{p_{i}}\right)=\prod_{1 \leq i \leq r} p_{i}^{\alpha_{i}-1} \prod_{1 \leq i \leq r}\left(p_{i}-1\right)$.
Moreover, if $(m, n)=1$ then $\varphi(m n)=\varphi(m) \varphi(n)$.
Proof. By Note 6.6.B, $\varphi(n)=\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{r}^{\prime}\right|$ and by Note 6.6.C, $\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|=\frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}}$ for all $1 \leq k \leq r$. So by the Inclusion-Exclusion Principle (Corollary 6.57) with $S=\mathbb{N}_{n}$, we have

$$
\begin{gathered}
\varphi(n)=\left|A_{1}^{\prime} \cap A_{2}^{\prime} \cap \cdots \cap A_{r}^{\prime}\right|=\sum_{k=0}^{r}(-1)^{k} S_{k} \\
=\sum_{k=0}^{r}(-1)^{k}\left(\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq r}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right|\right) \ldots
\end{gathered}
$$

Theorem 6.59 (continued 1)

Proof (continued). . .

$$
\varphi(n)=\sum_{k=0}^{r}(-1)^{k} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}} \text { by Note 6.6.C. }
$$

It is shown in Exercise 6.6.A (by induction) that

$$
\begin{gathered}
\sum_{k=0}^{r}(-1)^{k} \frac{1}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{k}}}=1-\sum_{1 \leq i_{1} \leq r} \frac{1}{p_{i_{1}}}+\sum_{1 \leq i_{1}<i_{2} \leq r} \frac{1}{p_{i_{1}} p_{i_{2}}} \\
-\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq r} \frac{1}{p_{i_{1}} p_{p_{2}} p_{i_{3}}}+\cdots+(-1)^{r} \frac{1}{p_{1} p_{2} \cdots p_{r}} \\
=\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \cdots
\end{gathered}
$$

Theorem 6.59 (continued 2)

Theorem 6.59. If n has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then
$\varphi(n)=n \prod_{1 \leq i \leq r}\left(1-\frac{1}{p_{i}}\right)=n \prod_{1 \leq i \leq r}\left(\frac{p_{i}-1}{p_{i}}\right)=\prod_{1 \leq i \leq r} p_{i}^{\alpha_{i}-1} \prod_{1 \leq i \leq r}\left(p_{i}-1\right)$.
Moreover, if $(m, n)=1$ then $\varphi(m n)=\varphi(m) \varphi(n)$.
Proof (continued). ...

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) .
$$

Since $1-\frac{1}{p_{i}}=\frac{p_{i}-1}{p_{i}}$ for each $1 \leq i \leq r$ then the second equality holds.
Since $\frac{p_{i}-1}{p_{i}}=p_{i}^{-1}\left(p_{i}-1\right)$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ then the third equality holds.

Theorem 6.59 (continued 3)

Theorem 6.59. If n has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then
$\varphi(n)=n \prod_{1 \leq i \leq r}\left(1-\frac{1}{p_{i}}\right)=n \prod_{1 \leq i \leq r}\left(\frac{p_{i}-1}{p_{i}}\right)=\prod_{1 \leq i \leq r} p_{i}^{\alpha_{i}-1} \prod_{1 \leq i \leq r}\left(p_{i}-1\right)$.
Moreover, if $(m, n)=1$ then $\varphi(m n)=\varphi(m) \varphi(n)$.
Proof (continued). If $(m, n)=1$ then the standard factorization of m is $q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{s}^{\beta_{s}}$ for primes q_{i} for $1 \leq i \leq s$, and $p_{i} \neq q_{j}$ for all $1 \leq i \leq r$ and $1 \leq j \leq s$. So by the third equality,

$$
\varphi(m n)=\prod_{1 \leq i \leq r} p_{i}^{\alpha_{i}-1} \prod_{1 \leq i \leq r}\left(p_{i}-1\right) \prod_{1 \leq j \leq s} q_{i}^{\beta_{j}-1} \prod_{1 \leq j \leq s}\left(q_{j}-1\right)=\varphi(m) \varphi(n),
$$

as claimed.

Theorem 6.62

Theorem 6.62. If $n>2$ then $\varphi(n)$ is even.
Proof. First, suppose n is a power of 2 , say $n=2^{k}$ with $k \geq 2$. Then by Corollary 6.60, $\varphi\left(2^{k}\right)=2^{k-1}(2-1)=2^{k-1}$ where $k-1 \geq 1$. That is, $\varphi(n)$ is even.

Theorem 6.62

Theorem 6.62. If $n>2$ then $\varphi(n)$ is even.

Proof. First, suppose n is a power of 2 , say $n=2^{k}$ with $k \geq 2$. Then by Corollary 6.60, $\varphi\left(2^{k}\right)=2^{k-1}(2-1)=2^{k-1}$ where $k-1 \geq 1$. That is, $\varphi(n)$ is even.

If n is not a power of 2 , then $n=p^{k} m$ for some odd prime $p, k \geq 1$, and $(p, m)=1$. Then

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p^{k} m\right)=\varphi\left(p^{k}\right) \varphi(m) \text { by Theorem } 6.59 \\
& =p^{k-1}(p-1) \varphi(m) \text { by Corollary } 6.60
\end{aligned}
$$

Since $p-1$ is even, then $\varphi(n)$ is even in this case also, as claimed.

Theorem 6.62

Theorem 6.62. If $n>2$ then $\varphi(n)$ is even.
Proof. First, suppose n is a power of 2 , say $n=2^{k}$ with $k \geq 2$. Then by Corollary $6.60, \varphi\left(2^{k}\right)=2^{k-1}(2-1)=2^{k-1}$ where $k-1 \geq 1$. That is, $\varphi(n)$ is even.

If n is not a power of 2 , then $n=p^{k} m$ for some odd prime $p, k \geq 1$, and $(p, m)=1$. Then

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p^{k} m\right)=\varphi\left(p^{k}\right) \varphi(m) \text { by Theorem } 6.59 \\
& =p^{k-1}(p-1) \varphi(m) \text { by Corollary } 6.60
\end{aligned}
$$

Since $p-1$ is even, then $\varphi(n)$ is even in this case also, as claimed.

Theorem 6.63

Theorem 6.63. If n is a positive integer, then $\varphi(n)>\sqrt{n} / 2$. Hence, $\lim _{n \rightarrow \infty} \varphi(n)=\infty$.

Proof. If $n=1$, then $\varphi(1)=1>\sqrt{1} / 2=1 / 2$. If $n=2^{k}$ is a power of 2 , then as shown in the proof of Theorem 6.62,
$\varphi\left(2^{k}\right)=2^{k-1}>2^{k / 2-1}=\sqrt{2^{k}} / 2$. If $n>1$ is not a power of 2 , the n has a standard factorization of the form $n=2^{\alpha_{0}} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $\alpha_{0} \geq 0$ and $\alpha_{i} \geq 1$ for some $1 \leq i \leq r$.

Theorem 6.63

Theorem 6.63. If n is a positive integer, then $\varphi(n)>\sqrt{n} / 2$. Hence, $\lim _{n \rightarrow \infty} \varphi(n)=\infty$.

Proof. If $n=1$, then $\varphi(1)=1>\sqrt{1} / 2=1 / 2$. If $n=2^{k}$ is a power of 2 , then as shown in the proof of Theorem 6.62, $\varphi\left(2^{k}\right)=2^{k-1}>2^{k / 2-1}=\sqrt{2^{k}} / 2$. If $n>1$ is not a power of 2 , the n has a standard factorization of the form $n=2^{\alpha_{0}} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $\alpha_{0} \geq 0$ and $\alpha_{i} \geq 1$ for some $1 \leq i \leq r$. Then

Theorem 6.63

Theorem 6.63. If n is a positive integer, then $\varphi(n)>\sqrt{n} / 2$. Hence, $\lim _{n \rightarrow \infty} \varphi(n)=\infty$.

Proof. If $n=1$, then $\varphi(1)=1>\sqrt{1} / 2=1 / 2$. If $n=2^{k}$ is a power of 2 , then as shown in the proof of Theorem 6.62, $\varphi\left(2^{k}\right)=2^{k-1}>2^{k / 2-1}=\sqrt{2^{k}} / 2$. If $n>1$ is not a power of 2 , the n has a standard factorization of the form $n=2^{\alpha_{0}} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $\alpha_{0} \geq 0$ and $\alpha_{i} \geq 1$ for some $1 \leq i \leq r$. Then

$$
\begin{aligned}
\varphi(n)= & \varphi\left(2^{\alpha_{0}}\right) \varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{r}^{\alpha_{r}}\right) \text { by Theorem } 6.59 \\
= & 2^{\alpha_{0}-1} p_{1}^{\alpha_{1}-1}\left(p_{1}^{\alpha_{1}}-1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}^{\alpha_{2}}-1\right) \cdots p_{r}^{\alpha_{r}-1}\left(p_{1}^{\alpha_{1}}-1\right) \\
& \quad \text { by Corollary } 6.60 \\
> & 2^{\alpha_{0}-1} p_{1}^{\alpha_{1}-1 / 2} p_{2}^{\alpha_{2}-1 / 2} \cdots p_{r}^{\alpha_{r}-1 / 2} \text { since } p_{i}-1 \geq \sqrt{p_{i}} \\
& \quad \text { for all prime } p_{i}>2
\end{aligned}
$$

Theorem 6.63 (continued)

Theorem 6.63. If n is a positive integer, then $\varphi(n)>\sqrt{n} / 2$. Hence, $\lim _{n \rightarrow \infty} \varphi(n)=\infty$.

Proof (continued). ...

$$
\begin{aligned}
\varphi(n) & >2^{\alpha_{0}-1} p_{1}^{\alpha_{1}-1 / 2} p_{2}^{\alpha_{2}-1 / 2} \cdots p_{r}^{\alpha_{r}-1 / 2} \\
\geq & 2^{\alpha_{0}-1} p_{1}^{\alpha_{1} / 2} p_{2}^{\alpha_{2} / 2} \cdots p_{r}^{\alpha_{r} / 2} \text { since } \alpha_{i}-1 / 2 \geq \alpha_{i} / 2 \\
& \quad \text { because } \alpha_{i} \geq 1 \text { for } 1 \leq i \leq r \\
\geq & 2^{\alpha_{0} / 2-1} p_{1}^{\alpha_{1} / 2} p_{2}^{\alpha_{2} / 2} \cdots p_{r}^{\alpha_{r} / 2} \text { since } \alpha_{0} / 2-1 \leq \alpha_{0}-1 \\
= & \sqrt{n} / 2
\end{aligned}
$$

So $\varphi(n)>\sqrt{n} / 2$ in all cases, as claimed.

Theorem 6.64

Theorem 6.64. If $m=2 \cdot 5^{2 k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n)=m$.

Proof. ASSUME that there is some n such that $\varphi(n)=2 \cdot 5^{2 k}$. Let the standard factorization of n be $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Then by Theorem 6.59 and Corollary 6.60,

$$
\varphi(n)=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{r}^{\alpha_{r}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right) .(*)
$$

Theorem 6.64

Theorem 6.64. If $m=2 \cdot 5^{2 k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n)=m$.

Proof. ASSUME that there is some n such that $\varphi(n)=2 \cdot 5^{2 k}$. Let the standard factorization of n be $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Then by Theorem 6.59 and Corollary 6.60,

$$
\varphi(n)=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{r}^{\alpha_{r}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right) .(*)
$$

Now for each odd prime $p_{i}, p_{i}-1$ is even. But since $\varphi(n)=2 \cdot 5^{2 k}$, then only one p_{i} can be an odd prime. Moreover, if $n=2^{\ell}$ then $\varphi(n)=2^{\ell-1}$ as seen in the proof of Theorem 6.62, but then $\varphi(n)$ lacks the power of 5 so this cannot be the case. That is, n must be of the form $n=2^{\alpha} p^{\beta}$ where p is an odd prime, $\beta \geq 1$, and $\alpha \in\{0,1\}$; for if $\alpha \geq 2$ then $\varphi(n)$ includes a factor of $2^{\alpha-1}$ and another factor of 2 from $p-1$, by $(*)$ in which case $\varphi(n)$ has a factor of 4.

Theorem 6.64

Theorem 6.64. If $m=2 \cdot 5^{2 k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n)=m$.

Proof. ASSUME that there is some n such that $\varphi(n)=2 \cdot 5^{2 k}$. Let the standard factorization of n be $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Then by Theorem 6.59 and Corollary 6.60,

$$
\varphi(n)=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{r}^{\alpha_{r}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right) .(*)
$$

Now for each odd prime $p_{i}, p_{i}-1$ is even. But since $\varphi(n)=2 \cdot 5^{2 k}$, then only one p_{i} can be an odd prime. Moreover, if $n=2^{\ell}$ then $\varphi(n)=2^{\ell-1}$ as seen in the proof of Theorem 6.62, but then $\varphi(n)$ lacks the power of 5 so this cannot be the case. That is, n must be of the form $n=2^{\alpha} p^{\beta}$ where p is an odd prime, $\beta \geq 1$, and $\alpha \in\{0,1\}$; for if $\alpha \geq 2$ then $\varphi(n)$ includes a factor of $2^{\alpha-1}$ and another factor of 2 from $p-1$, by $(*)$ in which case $\varphi(n)$ has a factor of 4 .

Theorem 6.64 (continued)

Theorem 6.64. If $m=2 \cdot 5^{2 k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n)=m$.
Proof (continued). Hence

$$
\varphi(n)=\varphi\left(2^{\alpha} p^{\beta}\right)=\varphi\left(2^{\alpha}\right) \varphi\left(p^{\beta}\right)=(1) p^{\beta-1}(p-1)=2 \cdot 5^{2 k} .
$$

Now if $\beta>1$ then $p=5$ (since the only prime divisors of $2 \cdot 5^{2 k}$ are 2 and 5 , and we know p is an odd prime). This gives $p-1=4$, but then we have too many factors of 2 in $\varphi(n)$. So we must have $\beta=1$, and then $\varphi(n)=p^{\beta-1}(p-1)=p-1=2 \cdot 5^{2 k}$, or $p=1+2 \cdot 5^{2 k}$. But
$5^{2 k}=(25)^{k} \equiv 1(\bmod 3)($ since $25 \equiv 1(\bmod 3)$ and by Corollary 6.43$)$, so $2 \cdot 5^{2 k} \equiv 2(\bmod 3)$ (also by Corollary 6.43). Therefore, $p=1+2 \cdot 5^{2 k} \equiv 0(\bmod 3)$. But the only prime which is divisible by 3 is 3 itself, so we must have $p=3$. Since $n=2^{\alpha} \cdot p^{\beta}$ and we have that $\alpha \in\{0,1\}, \beta=1$, and $p=3$ then we conclude that $n=3$ or $n=4$. But $\varphi(3)=\varphi(4)=2 \neq 2 \cdot 5^{2 k}$ where $k \in \mathbb{N}$, a CONTRADICTION. So the assumption that $\varphi(n)=2 \cdot 5^{2 k}$ for some n is false, and the claim holds.

Theorem 6.64 (continued)

Theorem 6.64. If $m=2 \cdot 5^{2 k}$, with $k \in \mathbb{N}$, then there is no integer n such that $\varphi(n)=m$.
Proof (continued). Hence

$$
\varphi(n)=\varphi\left(2^{\alpha} p^{\beta}\right)=\varphi\left(2^{\alpha}\right) \varphi\left(p^{\beta}\right)=(1) p^{\beta-1}(p-1)=2 \cdot 5^{2 k} .
$$

Now if $\beta>1$ then $p=5$ (since the only prime divisors of $2 \cdot 5^{2 k}$ are 2 and 5 , and we know p is an odd prime). This gives $p-1=4$, but then we have too many factors of 2 in $\varphi(n)$. So we must have $\beta=1$, and then $\varphi(n)=p^{\beta-1}(p-1)=p-1=2 \cdot 5^{2 k}$, or $p=1+2 \cdot 5^{2 k}$. But $5^{2 k}=(25)^{k} \equiv 1(\bmod 3)($ since $25 \equiv 1(\bmod 3)$ and by Corollary 6.43$)$, so $2 \cdot 5^{2 k} \equiv 2(\bmod 3)$ (also by Corollary 6.43). Therefore, $p=1+2 \cdot 5^{2 k} \equiv 0(\bmod 3)$. But the only prime which is divisible by 3 is 3 itself, so we must have $p=3$. Since $n=2^{\alpha} \cdot p^{\beta}$ and we have that $\alpha \in\{0,1\}, \beta=1$, and $p=3$ then we conclude that $n=3$ or $n=4$. But $\varphi(3)=\varphi(4)=2 \neq 2 \cdot 5^{2 k}$ where $k \in \mathbb{N}$, a CONTRADICTION. So the assumption that $\varphi(n)=2 \cdot 5^{2 k}$ for some n is false, and the claim holds.

