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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose A1,A2, . . . ,An are subsets of S . Define
S0 = |S | and, for 1 ≤ k ≤ n, define

Sk =
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |.

Then |A′1 ∩ A′2 ∩ · · · ∩ A′n| =
∑n

k=0(−1)kSk .

Proof. DeMorgan’s Law (Theorem 2.16(g) and induction) states that
(∪n

i=1Ai )
′ = ∩n

i=1A
′
i . That is (with S as the universal set),

A′1 ∩ A′2 ∩ · · · ∩ A′n = S − (∪n
i=1Ai ). So A′1 ∩ A′2 ∩ · · · ∩ A′n and (∪n

i=1Ai )
are disjoint. Hence, by the Addition Rule (Theorem 4.14) we have

|A′1 ∩ A′2 ∩ · · · ∩ A′n|+ |∪n
i=1Ai | = |S |

or
|∪n

i=1Ai | = |S | − |A′1 ∩ A′2 ∩ · · · ∩ A′n|.
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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57 (continued 1)

Proof (continued). . . .

|∪n
i=1Ai | = |S | − |A′1 ∩ A′2 ∩ · · · ∩ A′n|

=
n∑

i=1

|Ai | −

 ∑
1≤i1<i2≤n

|Ai1 ∩ Ai2 |


+

 ∑
1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3 |


−

 ∑
1≤i1<i2<i3<i4≤n

|Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4 |

 + · · ·

+(−1)n+1|A1 ∩ A2 ∩ · · ·An| by Theorem 6.56

=
n∑

k=1

(−1)k+1Sk = −
n∑

k=1

(−1)kSk .
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Corollary 6.57. Inclusion-Exclusion Principle

Corollary 6.57 (continued 2)

Corollary 6.57. Inclusion-Exclusion Principle.
Let S be a finite set and suppose A1,A2, . . . ,An are subsets of S . Define
S0 = |S | and, for 1 ≤ k ≤ n, define

Sk =
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |.

Then |A′1 ∩ A′2 ∩ · · · ∩ A′n| =
∑n

k=0(−1)kSk .
Proof (continued). . . .

|∪n
i=1Ai | = |S | − |A′1 ∩ A′2 ∩ · · · ∩ A′n| = −

n∑
k=1

(−1)kSk .

Since S0 = |S |, then

|A′1 ∩ A′2 ∩ · · · ∩ A′n| = |S |+
n∑

k=1

(−1)kSk =
n∑

k=0

(−1)kSk ,

as claimed.
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Theorem 6.59

Theorem 6.59

Theorem 6.59. If n has standard factorization pα1
1 pα2

2 · · · pαr
r , then

ϕ(n) = n
∏

1≤i≤r

(
1− 1

pi

)
= n

∏
1≤i≤r

(
pi − 1

pi

)
=

∏
1≤i≤r

pαi−1
i

∏
1≤i≤r

(pi − 1).

Moreover, if (m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof. By Note 6.6.B, ϕ(n) = |A′1 ∩ A′2 ∩ · · · ∩ A′r | and by Note 6.6.C,

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | =
n

pi1pi2 · · · pik

for all 1 ≤ k ≤ r . So by the

Inclusion-Exclusion Principle (Corollary 6.57) with S = Nn, we have

ϕ(n) = |A′1 ∩ A′2 ∩ · · · ∩ A′r | =
r∑

k=0

(−1)kSk

=
r∑

k=0

(−1)k

 ∑
1≤i1<i2<···<ik≤r

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |

 . . .
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Theorem 6.59

Theorem 6.59 (continued 1)

Proof (continued). . . .

ϕ(n) =
r∑

k=0

(−1)k
n

pi1pi2 · · · pik

by Note 6.6.C.

It is shown in Exercise 6.6.A (by induction) that

r∑
k=0

(−1)k
1

pi1pi2 · · · pik

= 1−
∑

1≤i1≤r

1

pi1

+
∑

1≤i1<i2≤r

1

pi1pi2

−
∑

1≤i1<i2<i3≤r

1

pi1pi2pi3

+ · · ·+ (−1)r
1

p1p2 · · · pr

=

(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pr

)
. . .
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Theorem 6.59

Theorem 6.59 (continued 2)

Theorem 6.59. If n has standard factorization pα1
1 pα2

2 · · · pαr
r , then

ϕ(n) = n
∏

1≤i≤r

(
1− 1

pi

)
= n

∏
1≤i≤r

(
pi − 1

pi

)
=

∏
1≤i≤r

pαi−1
i

∏
1≤i≤r

(pi − 1).

Moreover, if (m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof (continued). . . .

ϕ(n) = n

(
1− 1

p1

) (
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Since 1− 1

pi
=

pi − 1

pi
for each 1 ≤ i ≤ r then the second equality holds.

Since
pi − 1

pi
= p−1

i (pi − 1) and n = pα1
1 pα2

2 · · · pαr
r then the third equality

holds.
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Theorem 6.59

Theorem 6.59 (continued 3)

Theorem 6.59. If n has standard factorization pα1
1 pα2

2 · · · pαr
r , then

ϕ(n) = n
∏

1≤i≤r

(
1− 1

pi

)
= n

∏
1≤i≤r

(
pi − 1

pi

)
=

∏
1≤i≤r

pαi−1
i

∏
1≤i≤r

(pi − 1).

Moreover, if (m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof (continued). If (m, n) = 1 then the standard factorization of m is

qβ1
1 qβ2

2 · · · qβs
s for primes qi for 1 ≤ i ≤ s, and pi 6= qj for all 1 ≤ i ≤ r and

1 ≤ j ≤ s. So by the third equality,

ϕ(mn) =
∏

1≤i≤r

pαi−1
i

∏
1≤i≤r

(pi − 1)
∏

1≤j≤s

q
βj−1
i

∏
1≤j≤s

(qj − 1) = ϕ(m)ϕ(n),

as claimed.
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Theorem 6.62

Theorem 6.62

Theorem 6.62. If n > 2 then ϕ(n) is even.

Proof. First, suppose n is a power of 2, say n = 2k with k ≥ 2. Then by
Corollary 6.60, ϕ(2k) = 2k−1(2− 1) = 2k−1 where k − 1 ≥ 1. That is,
ϕ(n) is even.

If n is not a power of 2, then n = pkm for some odd prime p, k ≥ 1, and
(p,m) = 1. Then

ϕ(n) = ϕ(pkm) = ϕ(pk)ϕ(m) by Theorem 6.59

= pk−1(p − 1)ϕ(m) by Corollary 6.60.

Since p − 1 is even, then ϕ(n) is even in this case also, as claimed.
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Theorem 6.63

Theorem 6.63

Theorem 6.63. If n is a positive integer, then ϕ(n) >
√

n/2. Hence,
limn→∞ ϕ(n) = ∞.

Proof. If n = 1, then ϕ(1) = 1 >
√

1/2 = 1/2. If n = 2k is a power of 2,
then as shown in the proof of Theorem 6.62,
ϕ(2k) = 2k−1 > 2k/2−1 =

√
2k/2. If n > 1 is not a power of 2, the n has

a standard factorization of the form n = 2α0pα1
1 pα2

2 · · · pαr
r , with α0 ≥ 0

and αi ≥ 1 for some 1 ≤ i ≤ r .

Then

ϕ(n) = ϕ(2α0)ϕ(pα1
1 )ϕ(pα2

2 ) · · ·ϕ(pαr
r ) by Theorem 6.59

= 2α0−1pα1−1
1 (pα1

1 − 1)pα2−1
2 (pα2

2 − 1) · · · pαr−1
r (pα1

1 − 1)

by Corollary 6.60

> 2α0−1p
α1−1/2
1 p

α2−1/2
2 · · · pαr−1/2

r since pi − 1 ≥ √
pi

for all prime pi > 2
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Theorem 6.63

Theorem 6.63 (continued)

Theorem 6.63. If n is a positive integer, then ϕ(n) >
√

n/2. Hence,
limn→∞ ϕ(n) = ∞.

Proof (continued). . . .

ϕ(n) > 2α0−1p
α1−1/2
1 p

α2−1/2
2 · · · pαr−1/2

r

≥ 2α0−1p
α1/2
1 p

α2/2
2 · · · pαr/2

r since αi − 1/2 ≥ αi/2

because αi ≥ 1 for 1 ≤ i ≤ r

≥ 2α0/2−1p
α1/2
1 p

α2/2
2 · · · pαr/2

r since α0/2− 1 ≤ α0 − 1

=
√

n/2.

So ϕ(n) >
√

n/2 in all cases, as claimed.
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Theorem 6.64

Theorem 6.64

Theorem 6.64. If m = 2 · 52k , with k ∈ N, then there is no integer n such
that ϕ(n) = m.

Proof. ASSUME that there is some n such that ϕ(n) = 2 · 52k . Let the
standard factorization of n be n = pα1

1 pα2
2 · · · pαr

r . Then by Theorem 6.59
and Corollary 6.60,

ϕ(n) = pα1−1
1 pα2−1

2 · · · pαr−1
r (p1 − 1)(p2 − 1) · · · (pr − 1). (∗)

Now for each odd prime pi , pi − 1 is even. But since ϕ(n) = 2 · 52k , then
only one pi can be an odd prime. Moreover, if n = 2` then ϕ(n) = 2`−1 as
seen in the proof of Theorem 6.62, but then ϕ(n) lacks the power of 5 so
this cannot be the case. That is, n must be of the form n = 2αpβ where p
is an odd prime, β ≥ 1, and α ∈ {0, 1}; for if α ≥ 2 then ϕ(n) includes a
factor of 2α−1 and another factor of 2 from p − 1, by (∗) in which case
ϕ(n) has a factor of 4.
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Theorem 6.64

Theorem 6.64 (continued)

Theorem 6.64. If m = 2 · 52k , with k ∈ N, then there is no integer n such
that ϕ(n) = m.
Proof (continued). Hence

ϕ(n) = ϕ(2αpβ) = ϕ(2α)ϕ(pβ) = (1)pβ−1(p − 1) = 2 · 52k .

Now if β > 1 then p = 5 (since the only prime divisors of 2 · 52k are 2 and
5, and we know p is an odd prime). This gives p − 1 = 4, but then we
have too many factors of 2 in ϕ(n). So we must have β = 1, and then
ϕ(n) = pβ−1(p − 1) = p − 1 = 2 · 52k , or p = 1 + 2 · 52k . But
52k = (25)k ≡ 1 (mod 3) (since 25 ≡ 1 (mod 3) and by Corollary 6.43), so
2 · 52k ≡ 2 (mod 3) (also by Corollary 6.43). Therefore,
p = 1 + 2 · 52k ≡ 0 (mod 3). But the only prime which is divisible by 3 is 3
itself, so we must have p = 3. Since n = 2α · pβ and we have that
α ∈ {0, 1}, β = 1, and p = 3 then we conclude that n = 3 or n = 4. But
ϕ(3) = ϕ(4) = 2 6= 2 · 52k where k ∈ N, a CONTRADICTION. So the
assumption that ϕ(n) = 2 · 52k for some n is false, and the claim holds.
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Theorem 6.64

Theorem 6.64 (continued)
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