Mathematical Reasoning

Chapter 6. Number Theory

6.7. More on Prime Numbers—Proofs of Theorems

Introduction to Mathematical
Structures and Proofs
Second Edition

Table of contents

(1) Theorem 6.66
(2) Lemma 6.67
(3) Theorem 6.68
(4) Theorem 6.71

Theorem 6.66

Theorem 6.66. If $k \in \mathbb{N}$ and $n=2^{k}+1$ is prime, then k is a power of 2 . Proof. Suppose $n=2^{k}+1$ is prime. ASSUME there is a factorization of the exponent $k=s t$ with t odd and $t>1$. Then $n=2^{k}+1=\left(2^{s}\right) t+1$. But for an x we have (by induction on m where $t=2 m+1$, or simply by distribution):

$$
x^{t}+1=(x+1)\left(x^{t-1}-x^{t-2}+\cdots-x+1\right)=(x+1)\left(\sum_{i=0}^{t-1}(-1)^{i} x^{i}\right)
$$

But then with $x=2^{s}$, we then see that $\left(2^{s}+1\right) \mid n$, CONTRADICTING the fact that n is prime. So the assumption that the exponent k has an odd divisor t is false, so that k must be a power of 2 , as claimed.

Theorem 6.66

Theorem 6.66. If $k \in \mathbb{N}$ and $n=2^{k}+1$ is prime, then k is a power of 2 . Proof. Suppose $n=2^{k}+1$ is prime. ASSUME there is a factorization of the exponent $k=s t$ with t odd and $t>1$. Then $n=2^{k}+1=\left(2^{s}\right) t+1$. But for an x we have (by induction on m where $t=2 m+1$, or simply by distribution):

$$
x^{t}+1=(x+1)\left(x^{t-1}-x^{t-2}+\cdots-x+1\right)=(x+1)\left(\sum_{i=0}^{t-1}(-1)^{i} x^{i}\right) .
$$

But then with $x=2^{s}$, we then see that $\left(2^{s}+1\right) \mid n$, CONTRADICTING the fact that n is prime. So the assumption that the exponent k has an odd divisor t is false, so that k must be a power of 2 , as claimed.

Lemma 6.67

Lemma 6.67. For each $n \geq 1, F_{n}-2=F_{0} F_{1} \cdots F_{n-1}$.

Proof. We give a proof using the Principle of Mathematical Induction. For the basis case, we have $F_{1}-2=(5)-2=3=F_{0}$. For the induction hypothesis, we assume the result holds for $n=k \geq 1$; that is, $F_{k}-2=F_{0} F_{1} \cdots F_{k-1}$. Then

$$
\begin{gathered}
F_{k+1}-2=\left(2^{2^{k+1}}+1\right)-2=2^{2^{k+1}}-1=\left(2^{2^{k}}+1\right) \cdot\left(2^{2^{k}}-1\right) \\
=F_{k} \cdot\left(F_{k}-2\right)=F_{k} \cdot\left(F_{0} F_{1} \cdot F_{k-1}\right)=F_{0} F_{1} \cdots F_{k},
\end{gathered}
$$

so the claim holds for $n=k+1$ and the induction step holds. So by the Principle of Mathematical Induction, the claim holds for all $n \geq 1$.

Lemma 6.67

Lemma 6.67. For each $n \geq 1, F_{n}-2=F_{0} F_{1} \cdots F_{n-1}$.

Proof. We give a proof using the Principle of Mathematical Induction. For the basis case, we have $F_{1}-2=(5)-2=3=F_{0}$. For the induction hypothesis, we assume the result holds for $n=k \geq 1$; that is, $F_{k}-2=F_{0} F_{1} \cdots F_{k-1}$. Then

$$
\begin{gathered}
F_{k+1}-2=\left(2^{2^{k+1}}+1\right)-2=2^{2^{k+1}}-1=\left(2^{2^{k}}+1\right) \cdot\left(2^{2^{k}}-1\right) \\
=F_{k} \cdot\left(F_{k}-2\right)=F_{k} \cdot\left(F_{0} F_{1} \cdot F_{k-1}\right)=F_{0} F_{1} \cdots F_{k}
\end{gathered}
$$

so the claim holds for $n=k+1$ and the induction step holds. So by the Principle of Mathematical Induction, the claim holds for all $n \geq 1$.

Theorem 6.68

Theorem 6.68. The Fermat numbers are pairwise relatively prime.

Proof. ASSUME that prime number p divides both F_{m} and F_{n}, where $m<n$. The be Lemma 6.67 we know that $p \mid\left(F_{n}-2\right)$ (since F_{m} is a factor of $\left.F_{n}-2\right)$. But then $p \mid\left(F_{n}-\left(F_{n}-2\right)\right)$; that is, $p \mid 2$ so that $p=2$. A CONTRADICTION to the fact that p divides both F_{m} and F_{n}, and all Fermat numbers are odd. So the assumption that F_{m} and F_{n} have a common prime divisor is false; that is, any two Fermat numbers are relatively prime, as claimed.

Theorem 6.68

Theorem 6.68. The Fermat numbers are pairwise relatively prime.

Proof. ASSUME that prime number p divides both F_{m} and F_{n}, where $m<n$. The be Lemma 6.67 we know that $p \mid\left(F_{n}-2\right)$ (since F_{m} is a factor of $\left.F_{n}-2\right)$. But then $p \mid\left(F_{n}-\left(F_{n}-2\right)\right)$; that is, $p \mid 2$ so that $p=2$. A CONTRADICTION to the fact that p divides both F_{m} and F_{n}, and all Fermat numbers are odd. So the assumption that F_{m} and F_{n} have a common prime divisor is false; that is, any two Fermat numbers are relatively prime, as claimed.

Theorem 6.71

Theorem 6.71. There are infinitely many prime numbers.
Proof. ASSUME there are finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. For
$1 \leq i \leq k$ we have by Note 6.7.A(2), $\sum_{n=0}^{\infty} \frac{1}{p_{i}^{n}}=\frac{1}{1-1 / p_{i}} \in \mathbb{R}$. The
product $\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}$ is then a real number.

Theorem 6.71

Theorem 6.71. There are infinitely many prime numbers.
Proof. ASSUME there are finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. For $1 \leq i \leq k$ we have by Note 6.7.A(2), $\sum_{n=0}^{\infty} \frac{1}{p_{i}^{n}}=\frac{1}{1-1 / p_{i}} \in \mathbb{R}$. The product $\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}$ is then a real number. By Note 6.7.A(1)

$$
\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}=\prod_{i=1}^{k}\left(\sum_{n=0}^{\infty} \frac{1}{p_{i}^{n}}\right)
$$

Now the k series on the right hand side converge absolutely and so can be rearranged by Note 6.7.A(4). So the right-hand side includes all elements of \mathbb{N} which are products of powers of the primes $p_{1}, p_{2}, \ldots, p_{k}$ (this is a weak point in our argument; Gerstein makes an argument for this claim when there are only two primes, $p_{1}=2$ and $p_{2}=3$, in his Example 6.70)

Theorem 6.71

Theorem 6.71. There are infinitely many prime numbers.
Proof. ASSUME there are finitely many primes, say $p_{1}, p_{2}, \ldots, p_{k}$. For $1 \leq i \leq k$ we have by Note 6.7.A(2), $\sum_{n=0}^{\infty} \frac{1}{p_{i}^{n}}=\frac{1}{1-1 / p_{i}} \in \mathbb{R}$. The product $\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}$ is then a real number. By Note 6.7.A(1)

$$
\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}=\prod_{i=1}^{k}\left(\sum_{n=0}^{\infty} \frac{1}{p_{i}^{n}}\right)
$$

Now the k series on the right hand side converge absolutely and so can be rearranged by Note 6.7.A(4). So the right-hand side includes all elements of \mathbb{N} which are products of powers of the primes $p_{1}, p_{2}, \ldots, p_{k}$ (this is a weak point in our argument; Gerstein makes an argument for this claim when there are only two primes, $p_{1}=2$ and $p_{2}=3$, in his Example 6.70).

Theorem 6.71 (continued)

Theorem 6.71. There are infinitely many prime numbers.

Proof (continued). Denote these natural numbers as n_{1}, n_{2}, \ldots. Notice that each such n_{j} appears only once by the Fundamental Theorem of Arithmetic (Theorem 6.29). Hence $\prod_{i=1}^{k} \frac{1}{1-1 / p_{i}}=\sum_{n=0}^{\infty} \frac{1}{n}$. Now the left-hand side is some real number, but the right-hand side is a divergent series by Note 6.7.A(3), and this is a CONTRADICTION. So the assumption that there are finitely many primes is false, and nece there are infinitely many primes, as claimed.

