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Theorem 6.85 (continued)

Theorem 6.85. Suppose f is a multiplicative function. Then
(i) f(1) =1, and

r
(i) if n has standard factorization n = Hp}l", then
i=1

f(n)=]]f (H pf”) =17
i=1 i=1 i=1

.

Proof (continued). (ii) Since n = Hp?"', the definition of
i=1

“multiplicative function” gives

f(n) = f (H p,-“') =M.
i=1 i=1

as claimed. O
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Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then
(i) f(1) =1, and

r

(i) if n has standard factorization n = Hp?"', then
i=1

r

fn)=]]f ( pf-”') =T fG) =11 f(p)™.
i=1 1 i=1 i=1

i=

Proof. (i) By definition of “multiplicative function,” there is some n € N
such that f(n) # 0. So f(n) = f(1-n) = f(1)f(n), so dividing by nonzero
f(n) gives f(1) =1, as claimed.

Mathematical Reasoning March 3, 2022 3 /20

Theorem 6.89

Theorem 6.89. o is a multiplicative function.

Proof. Suppose (m,n) = 1. If either m =1 or n =1, then

o(mn) = o(m)o(n) since (1) = 1. So without loss of generality we can
assume that both m and n are greater than 1 and so have standard
factorizations m = [[_; pj" and n=[]7_, qjjj with the p'a and g's
distinct primes (because (m, n) = 1). Now if d | mn, then

vy

d=p{*ps?---py qi\lqé‘2 e qSAS with v; < o and \; < 3; for all i and j;

-~ -~

d >
so di|m, d»|n, and (d1,d) = 1. Then

a(mn) = E d= E d1d2 = E dl E d2 = U(m)a(n),
d|mn di|myda|n di|m da|n
as claimed O
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Corollary 6.90

Corollary 6.90

lL[ ﬁ in+1 1
Corollary 6.90. If n = | | p then o(n) = | | ———
i=1 o Pl
Proof. By Theorem 6.89, ¢ is multiplicative so we have

o ([T, pi") =T1i—1 o(p{"). Now we consider o(p®) for p prime and

a > 1. For any x we have (x — 1)(1 + x +x2 + -+ - 4+ x¥) = x®*1 — 1 (as
can be shown inductively or by distribution on the left-hand side). So with

pa+1 -1
x = p we have 0(pa):1+P+P2+---+pa= ﬁ Then
r r Oé+1
i P -1
o(m) = [[ot) = 15—
i=1 i1 P
as claimed. ]
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.

Proof. First, suppose n = 2P~1(2P — 1), with 2P — 1 a Mersenne prime.
Then n is even and since o is multiplicative by Theorem 6.89 (2P — 1 and
2P — 1 are certainly relatively prime), then o(n) = o(2P~1)o(2P — 1). But
o(2P 1) =1+4+2+224... 42,71 =2P 1, and ¢(2P — 1) = 2P because
2P — 1 is prime by hypothesis (see Example 6.88). So

a(n) =c(2P)o(2P —1) = (2P — 1) - 2P =2.2P"1(2P — 1) = 2n and
hence n is perfect, as claimed. Notice that this is a proof of Euclid’s result
in Book IX, Proposition 36 of the Elements.
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Exercise 6.93

Exercise 6.93

Exercise 6.93. Prove that if n is positive and composite, then 27 — 1 is
not prime. That is, for 2" — 1 to be prime, it is necessary that n is prime.

Proof. Suppose n is a positive composite number, say n = kf where k and
¢ are positive and greater than 1. As commented in the proof of Corollary
6.90, any all x we have (x — 1)(1 + x + x% + - -+ + x®) = x®*1 — 1. With
x=2Kand a« =n—1=k{—1 we have

(2k _ 1)(1 4 2/( 4 22/( e 2/(5—1) — 2(k€—1)+1 _ 1 — 2/(5 _ 1 — 2!7 _ 1

So 2K — 1 (which is at least 3) is a divisor of 2" — 1 and 2" — 1 is not
prime, as claimed. O
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose n is an even perfect number; say
n = 2Km where k > 1 and m is odd. Since n is perfect by hypothesis, we
have o(n) = 2n = 2k*1m. Now 2% and m are relatively prime, o is
multiplicative by Theorem 6.89, and by Corollary 6.90 (with r =1, p; = 2,
and a1 = k) we have o(2K) = 2k¥1 — 1, so we also have

o(n) = o(29)a(m) = (2K — 1)a(m).

Therefore 2k m = (2k1 — 1)a(m). Since 21 and 251 — 1 are
relatively prime, then this implies that 2K+ | o(m), say o(m) = 2k*+1c.
Then 2k+1m = (21 — 1)2k+1¢, which implies that m = (21 — 1)c and
c is a divisor of m. Also,

m= 21 —1)c=2"c—c=0(m)—c.

Therefore o(m) = m+ c.
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Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer n is perfect if and only if there is a factorization Lemma 6.96. Suppose n € N. Then Z”(d) =
n = 2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime. din

Lemma 6.96

1 ifn=1
{ 0 ifn>1.
Proof. If n =1, then u(n) = (1) = 1 by the definition of 1(1) (the first
part). If n=p a prime, then 3, , pu(d) = pu(1) + p(p) =1+ (- 1)t =0,
as claimed. Now suppose n has standard factorization py*p5? - - - p®, with
m+c=o(m=1+d+ds+--- r>1and o; > 1 for all i. If a divisor d of n divides the product
sothat c =1+ do + d3 + - - - + dp where c is one of the terms on the pLp2- - pr, then by the _definition of 1i(d) (t.he secom.j part) we have
right-hand side of this equation. This can only be the case if ¢ =1 (for if p(d) - i_l (the depending on how many primes are in the s.tz?mdard
¢ #1, then ¢ = 1 + ¢ + (possibly other positive terms), a contradiction). féctorlzatl.o.n of d, even or odd respectively). For al! <_3t_her divisors d of n
So we have m = (2Kt — 1)c = 251 _ T and o(m) = m + ¢ = m + 1. (|f such d|V|§ors exist) we have u(d) = 0 by the definition of u(d) (the
Therefore, the only divisors of m are 1 and m itself, so that m is a prime of third part; since such d-|v1|sors must be divisible by some square of at least
the form 25+1 — 1. By Exercise 6.93, we see that k -+ 1 must be prime, say ogle E;lme).6 Noyv the divisors of pLp2 - py are all of the form
p =k + 1. Hence m is a Mersenne prime. Also, we have pi Py’ - ppr with g € {0, 1} for all 7.
n=2km =2P=1(2P — 1), as claimed. O

Proof (continued). Denote the divisors of m as
di=1,da,d3,...,dp,dpr1 = m; since c is a divisor of m and ¢ < m, then
cisoneof 1,dp,ds,...,dp. Since o(m) = m+ c from above, we now have

+ dp + m,
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Lemma 6.96 Theorem 6.97. Mobius-Inversion Formula

Lemma 6.96 (continued)

Proof (continued). There are (7) of these divisors in which exactly k of
the exponents ¢; are equal to 1 (the number of ways we can choose the
subscripts for the value-one exponents, the value-zero exponents then
being determined by default). Equivalently, there are (;) divisors of

pip2 - - - pr having exactly k prime factors. For each such divisor d we have

vk 1 if kis even
u(d) = (=1) _{ —1 if kis odd,

by the definition of 1(d) (the second part). We therefore have, by the
Binomial Theorem (see Theorem 5.73),

Sud= X w=3 ;) =X () wrr=o

d|n d|pip2-pr k=0 k=0
as claimed. ]
Mathematical Reasoning March 3, 2022 12 /20

Theorem 6.97. Mobius-Inversion Formula

Theorem 6.97. Mdobius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =>4/, f(d) for all

n € N. Then
Z,u g(n/d).

Proof. First, if d|n then n= cd for c = n/d is a divisor of n (and vice
versa). We have

UL M EUP IR

by the definition of g

d|n c|n/d
= Z p(d)f(c) distributing
d|n, c|n/d

- Z p(d)f(c) :Z f(c) Z u(d) | factoring.

cd=n cln dlin/c
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Theorem 6.97. Mabius-Inversion Formula (continued) Lemma 6.98

Theorem 6.97. Mobius-Inversion Formula.

Let f be an arithmetic function, and suppose g(n) =>4/, f(d) for all Lemma 6.98. If n € N, then Z(p(d) -

n € N. Then dln
Z,u g(n/d). Proof. Let n € N be given. For the set of integers S = {1,2,...,n},
define the set Cy (where 1 < d < n) to consist of those numbers in S that
have greatest common divisor with n or d. That is, for given n we have
: m € Cy4 if and only if (m, n) = d. But (m,n) = d if and only if

Proof (continued). . Z,u g(n/d) = ;; fe) dzn;clu(d) - By (m/d,n/d) =1. So m € Cy4 if and only if m/d is relatively prime to n/d.

Lemma 6.96 we have Zd|n/c 1(d) = 0 unless d =1 (that is, ¢ = n). So The number of positive integers less than or equal to n/d and relatively

in the right-most term in the equation above, only the term with c =n'is prime to n/d is, by definition, ¢(n/d). So the number of elements in Cg is

nonzero. When ¢ = n, the right-most term is f(n)u(1) = f(n). That is, ¢(n/d). Since each element of S = {1,2,..., n} is in exactly one Cy, then

n=7> g4 n,¢(n/d). Now if d|n, then n = dc for some c where c|n (and
¢ = n/d). So summing p(n/d) over all d|n, is equivalent to summing

Zu g(n/d)=>_[f(c) > uld) | =f(n), p(c) over all ¢|n. That is, Yg |, (n/d) = ¢, ¢(c). So
cln dln/c n="> g ne(n/d) =24 ,¢(d), as claimed. O
as claimed. O
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Theorem 6.99 Theorem 6.99 (continued 1)
Theorem 6.99. Proof (continued). Now nu(1)/1 = n, while if d | p1p2---pr and d # 1
(i) If n has standard factorization pJ*p5? - - - p2r, then then d is a product of the form p; p;, - - - pj, with 1 <t < r and (say)
. pi, < pi, < -+ < pj, so that (by the definition of Mébius function )
1 = (=1)t
n) = ”H (1 B _.> . u(d) = (=1)t. Therefore
i= pi Z d)/d =n-— Z — o i
(ii) ¢ is multiplicative. d|P1P2"-Pr <y
n n
Proof. Define the identity function g(n) = n for all n € N. Then by + Z Or P P +-+ (1) Z P
Lemma 6.98 we have g(n) = n =34, ,¢(d), so the Mdbius inversion <ip<iz TMTREE it <ip <y T "
formula (with f as ) yields 1
D T S
= w(d)g(n/d) =D p(d)(n/d)= > nu(d)/d, hoh PP S PiPiPis
d|n din d|pip2:pr )
| B y | y | -1y )., <1z_>...
since u(d) = 0 for any divisor d that is not a divisor of p1ps - - p,, since (-1) i1<i;-<i, PiPiy - - Pi, :1:[1 pi

such d would not be square-free (1 is a Mobius function).
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Theorem 6.99 (continued 2)

Theorem 6.99.

(i) If n has standard factorization pJ*p5? - - - p2r, then

n):niljl(l—%>.

Proof (continued). ...where the last equality holds by the Principle of
Mathematical Induction. Therefore,

ZM g(n/d) =Y u(d)

d|n

(ii) ¢ is multiplicative.

(n/d>=ni1jl(1=§),

as claimed.

(ii) This was proved in the “moreover” claim in proof of Theorem

6.59. 0
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Theorem 6.101 (continued)

Theorem 6.101. If f and g are multiplicative functions, then f x g is
multiplicative.

Proof (continued). So

(Fxg)ab) = Y f(d)f(do)g(a/dh)g(b/dy)

d1 ‘ a, d2 ‘ b
= Z f(di)g(a/d1) Z f(d2)g(b/di) | factoring
d1 ‘ a d2 ‘ b
= (fxg)(a)-(f=g)(b),
so that f x g is multiplicative, as claimed. O
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Theorem 6.101

Theorem 6.101. If f and g are multiplicative functions, then f x g is
multiplicative.

Proof. Suppose (a, b) = 1. Then the divisors of ab are the numbers of the
form d = did, with d; | a and d» | b. We have by the definition of f * g,

(f x g)(ab) Zf g(ab/d) = Z f(chdb)g(ab/(did»))
d|ab di|a, da|b
= Y f(d)f(do)g(a/ch)g(b/d),

dila, da| b

because f and g are multiplicative.
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