## Mathematical Reasoning

## Chapter 6. Number Theory

6.9. Perfect Numbers, Mersenne Primes, Arithmetic Functions—Proofs of Theorems


Introduction to Mathematical Structures and Proofs

Second Edition

## Table of contents

(1) Theorem 6.85
(2) Theorem 6.89
(3) Corollary 6.90
(4) Exercise 6.93
(5) Theorem 6.94. Euclid-Euler Theorem
(6) Lemma 6.96
(7) Theorem 6.97. Möbius-Inversion Formula
(8) Lemma 6.98
(9) Theorem 6.99
(10) Theorem 6.101

## Theorem 6.85

Theorem 6.85. Suppose $f$ is a multiplicative function. Then
(i) $f(1)=1$, and
(ii) if $n$ has standard factorization $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, then

$$
f(n)=\prod_{i=1}^{r} f\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}\right)^{\alpha_{i}} .
$$

Proof. (i) By definition of "multiplicative function," there is some $n \in \mathbb{N}$ such that $f(n) \neq 0$. So $f(n)=f(1 \cdot n)=f(1) f(n)$, so dividing by nonzero $f(n)$ gives $f(1)=1$, as claimed.

## Theorem 6.85

Theorem 6.85. Suppose $f$ is a multiplicative function. Then
(i) $f(1)=1$, and
(ii) if $n$ has standard factorization $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, then

$$
f(n)=\prod_{i=1}^{r} f\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}\right)^{\alpha_{i}} .
$$

Proof. (i) By definition of "multiplicative function," there is some $n \in \mathbb{N}$ such that $f(n) \neq 0$. So $f(n)=f(1 \cdot n)=f(1) f(n)$, so dividing by nonzero $f(n)$ gives $f(1)=1$, as claimed.

## Theorem 6.85 (continued)

Theorem 6.85. Suppose $f$ is a multiplicative function. Then
(i) $f(1)=1$, and
(ii) if $n$ has standard factorization $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, then

$$
f(n)=\prod_{i=1}^{r} f\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}^{\alpha_{i}}\right) .
$$

Proof (continued). (ii) Since $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, the definition of "multiplicative function" gives

$$
f(n)=f\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} f\left(p_{i}^{\alpha_{i}}\right)
$$

as claimed.

## Theorem 6.89

Theorem 6.89. $\sigma$ is a multiplicative function.
Proof. Suppose $(m, n)=1$. If either $m=1$ or $n=1$, then
$\sigma(m n)=\sigma(m) \sigma(n)$ since $\sigma(1)=1$. So without loss of generality we can assume that both $m$ and $n$ are greater than 1 and so have standard factorizations $m=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ and $n=\prod_{j=1}^{s} q_{j}^{\beta_{j}}$ with the $p^{\prime}$ a and $q^{\prime} s$ distinct primes (because $(m, n)=1$ ). Now if $d \mid m n$, then $d=\underbrace{p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \cdots p_{r}^{\nu_{r}}}_{d_{1}} \underbrace{q_{1}^{\lambda_{1}} q_{2}^{\lambda_{2}} \cdots q_{s}^{\lambda_{s}}}_{d_{2}}$ with $\nu_{i} \leq \alpha_{i}$ and $\lambda_{j} \leq \beta_{j}$ for all $i$ and $j$;
so $d_{1}\left|m, d_{2}\right| n$, and $\left(d_{1}, d_{2}\right)=1$. Then

as claimed

## Theorem 6.89

Theorem 6.89. $\sigma$ is a multiplicative function.
Proof. Suppose $(m, n)=1$. If either $m=1$ or $n=1$, then
$\sigma(m n)=\sigma(m) \sigma(n)$ since $\sigma(1)=1$. So without loss of generality we can assume that both $m$ and $n$ are greater than 1 and so have standard factorizations $m=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ and $n=\prod_{j=1}^{s} q_{j}^{\beta_{j}}$ with the $p^{\prime}$ a and $q$ 's distinct primes (because $(m, n)=1$ ). Now if $d \mid m n$, then $d=\underbrace{p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \cdots p_{r}^{\nu_{r}}}_{d_{1}} \underbrace{q_{1}^{\lambda_{1}} q_{2}^{\lambda_{2}} \cdots q_{s}^{\lambda_{s}}}_{d_{2}}$ with $\nu_{i} \leq \alpha_{i}$ and $\lambda_{j} \leq \beta_{j}$ for all $i$ and $j$;
so $d_{1}\left|m, d_{2}\right| n$, and $\left(d_{1}, d_{2}\right)=1$. Then

$$
\sigma(m n)=\sum_{d \mid m n} d=\sum_{d_{1}\left|m, d_{2}\right| n} d_{1} d_{2}=\left(\sum_{d_{1} \mid m} d_{1}\right)\left(\sum_{d_{2} \mid n} d_{2}\right)=\sigma(m) \sigma(n),
$$

as claimed

## Corollary 6.90

Corollary 6.90. If $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ then $\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}$.
Proof. By Theorem 6.89, $\sigma$ is multiplicative so we have $\sigma\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} \sigma\left(p_{i}^{\alpha_{i}}\right)$. Now we consider $\sigma\left(p^{\alpha}\right)$ for $p$ prime and $\alpha \geq 1$. For any $x$ we have $(x-1)\left(1+x+x^{2}+\cdots+x^{\alpha}\right)=x^{\alpha+1}-1$ (as can be shown inductively or by distribution on the left-hand side). So with $x=p$ we have $\sigma\left(p^{\alpha}\right)=1+p+p^{2}+\cdots+p^{\alpha}=\frac{p^{\alpha+1}-1}{p-1}$. Then

$$
\sigma(n)=\prod_{i=1}^{r} \sigma\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} \frac{p^{\alpha+1}-1}{p-1}
$$

as claimed.

## Corollary 6.90

Corollary 6.90. If $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ then $\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}$.
Proof. By Theorem 6.89, $\sigma$ is multiplicative so we have $\sigma\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} \sigma\left(p_{i}^{\alpha_{i}}\right)$. Now we consider $\sigma\left(p^{\alpha}\right)$ for $p$ prime and $\alpha \geq 1$. For any $x$ we have $(x-1)\left(1+x+x^{2}+\cdots+x^{\alpha}\right)=x^{\alpha+1}-1$ (as can be shown inductively or by distribution on the left-hand side). So with $x=p$ we have $\sigma\left(p^{\alpha}\right)=1+p+p^{2}+\cdots+p^{\alpha}=\frac{p^{\alpha+1}-1}{p-1}$. Then

$$
\sigma(n)=\prod_{i=1}^{r} \sigma\left(p_{i}^{\alpha_{i}}\right)=\prod_{i=1}^{r} \frac{p^{\alpha+1}-1}{p-1}
$$

as claimed.

## Exercise 6.93

Exercise 6.93. Prove that if $n$ is positive and composite, then $2^{n}-1$ is not prime. That is, for $2^{n}-1$ to be prime, it is necessary that $n$ is prime.

Proof. Suppose $n$ is a positive composite number, say $n=k \ell$ where $k$ and $\ell$ are positive and greater than 1 . As commented in the proof of Corollary 6.90, any all $x$ we have $(x-1)\left(1+x+x^{2}+\cdots+x^{\alpha}\right)=x^{\alpha+1}-1$. With $x=2^{k}$ and $\alpha=n-1=k \ell-1$ we have $\left(2^{k}-1\right)\left(1+2^{k}+2^{2 k}+\cdots+2^{k \ell-1}\right)=2^{(k \ell-1)+1}-1=2^{k l}-1=2^{n}-1$.

So $2^{k}-1$ (which is at least 3 ) is a divisor of $2^{n}-1$ and $2^{n}-1$ is not prime, as claimed.

## Exercise 6.93

Exercise 6.93. Prove that if $n$ is positive and composite, then $2^{n}-1$ is not prime. That is, for $2^{n}-1$ to be prime, it is necessary that $n$ is prime.

Proof. Suppose $n$ is a positive composite number, say $n=k \ell$ where $k$ and $\ell$ are positive and greater than 1 . As commented in the proof of Corollary 6.90, any all $x$ we have $(x-1)\left(1+x+x^{2}+\cdots+x^{\alpha}\right)=x^{\alpha+1}-1$. With $x=2^{k}$ and $\alpha=n-1=k \ell-1$ we have
$\left(2^{k}-1\right)\left(1+2^{k}+2^{2 k}+\cdots+2^{k \ell-1}\right)=2^{(k \ell-1)+1}-1=2^{k \ell}-1=2^{n}-1$.
So $2^{k}-1$ (which is at least 3 ) is a divisor of $2^{n}-1$ and $2^{n}-1$ is not prime, as claimed.

## Theorem 6.94. Euclid-Euler Theorem

## Theorem 6.94. Euclid-Euler Theorem.

A positive even integer $n$ is perfect if and only if there is a factorization $n=2^{p-1}\left(2^{p}-1\right)$ with $p$ prime and $2^{p}-1$ a Mersenne prime.

Proof. First, suppose $n=2^{p-1}\left(2^{p}-1\right)$, with $2^{p}-1$ a Mersenne prime.
Then $n$ is even and since $\sigma$ is multiplicative by Theorem $6.89\left(2^{p}-1\right.$ and $2^{P}-1$ are certainly relatively prime), then $\sigma(n)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)$. But $\sigma\left(2^{p-1}\right)=1+2+2^{2}+\cdots+2^{p-1}=2^{p}-1$, and $\sigma\left(2^{p}-1\right)=2^{p}$ because $2^{p}-1$ is prime by hypothesis (see Example 6.88).

## Theorem 6.94. Euclid-Euler Theorem

## Theorem 6.94. Euclid-Euler Theorem.

A positive even integer $n$ is perfect if and only if there is a factorization $n=2^{p-1}\left(2^{p}-1\right)$ with $p$ prime and $2^{p}-1$ a Mersenne prime.

Proof. First, suppose $n=2^{p-1}\left(2^{p}-1\right)$, with $2^{p}-1$ a Mersenne prime.
Then $n$ is even and since $\sigma$ is multiplicative by Theorem $6.89\left(2^{p}-1\right.$ and $2^{p}-1$ are certainly relatively prime $)$, then $\sigma(n)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)$. But $\sigma\left(2^{p-1}\right)=1+2+2^{2}+\cdots+2^{p-1}=2^{p}-1$, and $\sigma\left(2^{p}-1\right)=2^{p}$ because $2^{p}-1$ is prime by hypothesis (see Example 6.88).
hence $n$ is perfect, as claimed. Notice that this is a proof of Euclid's result in Book IX, Proposition 36 of the Elements.

## Theorem 6.94. Euclid-Euler Theorem

## Theorem 6.94. Euclid-Euler Theorem.

A positive even integer $n$ is perfect if and only if there is a factorization $n=2^{p-1}\left(2^{p}-1\right)$ with $p$ prime and $2^{p}-1$ a Mersenne prime.

Proof. First, suppose $n=2^{p-1}\left(2^{p}-1\right)$, with $2^{p}-1$ a Mersenne prime.
Then $n$ is even and since $\sigma$ is multiplicative by Theorem $6.89\left(2^{p}-1\right.$ and $2^{p}-1$ are certainly relatively prime $)$, then $\sigma(n)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)$. But $\sigma\left(2^{p-1}\right)=1+2+2^{2}+\cdots+2^{p-1}=2^{p}-1$, and $\sigma\left(2^{p}-1\right)=2^{p}$ because $2^{p}-1$ is prime by hypothesis (see Example 6.88). So $\sigma(n)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)=\left(2^{p}-1\right) \cdot 2^{p}=2 \cdot 2^{p-1}\left(2^{p}-1\right)=2 n$ and hence $n$ is perfect, as claimed. Notice that this is a proof of Euclid's result in Book IX, Proposition 36 of the Elements.

## Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose $n$ is an even perfect number; say $n=2^{k} m$ where $k \geq 1$ and $m$ is odd. Since $n$ is perfect by hypothesis, we have $\sigma(n)=2 n=2^{k+1} m$. Now $2^{k}$ and $m$ are relatively prime, $\sigma$ is multiplicative by Theorem 6.89, and by Corollary 6.90 (with $r=1, p_{1}=2$, and $\alpha_{1}=k$ ) we have $\sigma\left(2^{k}\right)=2^{k+1}-1$, so we also have

$$
\sigma(n)=\sigma\left(2^{k}\right) \sigma(m)=\left(2^{k+1}-1\right) \sigma(m)
$$

Therefore $2^{k+1} m=\left(2^{k+1}-1\right) \sigma(m)$. Since $2^{k+1}$ and $2^{k+1}-1$ are relatively prime, then this implies that $2^{k+1} \mid \sigma(m)$, say $\sigma(m)=2^{k+1} c$. Then $2^{k+1} m=\left(2^{k+1}-1\right) 2^{k+1} c$, which implies that $m=\left(2^{k+1}-1\right) c$ and $c$ is a divisor of $m$. Also,

$$
m=\left(2^{k+1}-1\right) c=2^{k+1} c-c=\sigma(m)-c .
$$

Therefore $\sigma(m)=m+c$.

## Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose $n$ is an even perfect number; say $n=2^{k} m$ where $k \geq 1$ and $m$ is odd. Since $n$ is perfect by hypothesis, we have $\sigma(n)=2 n=2^{k+1} m$. Now $2^{k}$ and $m$ are relatively prime, $\sigma$ is multiplicative by Theorem 6.89, and by Corollary 6.90 (with $r=1, p_{1}=2$, and $\alpha_{1}=k$ ) we have $\sigma\left(2^{k}\right)=2^{k+1}-1$, so we also have

$$
\sigma(n)=\sigma\left(2^{k}\right) \sigma(m)=\left(2^{k+1}-1\right) \sigma(m) .
$$

Therefore $2^{k+1} m=\left(2^{k+1}-1\right) \sigma(m)$. Since $2^{k+1}$ and $2^{k+1}-1$ are relatively prime, then this implies that $2^{k+1} \mid \sigma(m)$, say $\sigma(m)=2^{k+1} c$. Then $2^{k+1} m=\left(2^{k+1}-1\right) 2^{k+1} c$, which implies that $m=\left(2^{k+1}-1\right) c$ and $c$ is a divisor of $m$. Also,

$$
m=\left(2^{k+1}-1\right) c=2^{k+1} c-c=\sigma(m)-c
$$

Therefore $\sigma(m)=m+c$.

## Theorem 6.94. Euclid-Euler Theorem (continued 2)

## Theorem 6.94. Euclid-Euler Theorem.

A positive even integer $n$ is perfect if and only if there is a factorization $n=2^{p-1}\left(2^{p}-1\right)$ with $p$ prime and $2^{p}-1$ a Mersenne prime.

Proof (continued). Denote the divisors of $m$ as
$d_{1}=1, d_{2}, d_{3}, \ldots, d_{\ell}, d_{\ell+1}=m$; since $c$ is a divisor of $m$ and $c<m$, then $c$ is one of $1, d_{2}, d_{3}, \ldots, d_{\ell}$. Since $\sigma(m)=m+c$ from above, we now have

$$
m+c=\sigma(m)=1+d_{2}+d_{3}+\cdots+d_{\ell}+m,
$$

so that $c=1+d_{2}+d_{3}+\cdots+d_{\ell}$ where $c$ is one of the terms on the right-hand side of this equation. This can only be the case if $c=1$ (for if $c \neq 1$, then $c=1+c+$ (possibly other positive terms), a contradiction).
So we have $m=\left(2^{k+1}-1\right) c=2^{k+1}-1$ and $\sigma(m)=m+c=m+1$.
Therefore, the only divisors of $m$ are 1 and $m$ itself, so that $m$ is a prime of the form $2^{k+1}-1$. By Exercise 6.93 , we see that $k+1$ must be prime, say $p=k+1$. Hence $m$ is a Mersenne prime. Also, we have $n=2^{k} m=2^{p-1}\left(2^{p}-1\right)$, as claimed

## Theorem 6.94. Euclid-Euler Theorem (continued 2)

## Theorem 6.94. Euclid-Euler Theorem.

A positive even integer $n$ is perfect if and only if there is a factorization $n=2^{p-1}\left(2^{p}-1\right)$ with $p$ prime and $2^{p}-1$ a Mersenne prime.

Proof (continued). Denote the divisors of $m$ as
$d_{1}=1, d_{2}, d_{3}, \ldots, d_{\ell}, d_{\ell+1}=m$; since $c$ is a divisor of $m$ and $c<m$, then $c$ is one of $1, d_{2}, d_{3}, \ldots, d_{\ell}$. Since $\sigma(m)=m+c$ from above, we now have

$$
m+c=\sigma(m)=1+d_{2}+d_{3}+\cdots+d_{\ell}+m,
$$

so that $c=1+d_{2}+d_{3}+\cdots+d_{\ell}$ where $c$ is one of the terms on the right-hand side of this equation. This can only be the case if $c=1$ (for if $c \neq 1$, then $c=1+c+$ (possibly other positive terms), a contradiction).
So we have $m=\left(2^{k+1}-1\right) c=2^{k+1}-1$ and $\sigma(m)=m+c=m+1$. Therefore, the only divisors of $m$ are 1 and $m$ itself, so that $m$ is a prime of the form $2^{k+1}-1$. By Exercise 6.93, we see that $k+1$ must be prime, say $p=k+1$. Hence $m$ is a Mersenne prime. Also, we have $n=2^{k} m=2^{p-1}\left(2^{p}-1\right)$, as claimed.

## Lemma 6.96

Lemma 6.96. Suppose $n \in \mathbb{N}$. Then $\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1 .\end{cases}$
Proof. If $n=1$, then $\mu(n)=\mu(1)=1$ by the definition of $\mu(1)$ (the first part). If $n=p$ a prime, then $\sum_{d \mid p} \mu(d)=\mu(1)+\mu(p)=1+(-1)^{1}=0$, as claimed. Now suppose $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $r \geq 1$ and $\alpha_{i} \geq 1$ for all $i$. If a divisor $d$ of $n$ divides the product $p_{1} p_{2} \cdots p_{r}$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d)= \pm 1$ (the depending on how many primes are in the standard factorization of $d$, even or odd respectively).

## Lemma 6.96

Lemma 6.96. Suppose $n \in \mathbb{N}$. Then $\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1 .\end{cases}$
Proof. If $n=1$, then $\mu(n)=\mu(1)=1$ by the definition of $\mu(1)$ (the first part). If $n=p$ a prime, then $\sum_{d \mid p} \mu(d)=\mu(1)+\mu(p)=1+(-1)^{1}=0$, as claimed. Now suppose $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $r \geq 1$ and $\alpha_{i} \geq 1$ for all $i$. If a divisor $d$ of $n$ divides the product $p_{1} p_{2} \cdots p_{r}$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d)= \pm 1$ (the depending on how many primes are in the standard factorization of $d$, even or odd respectively). For all other divisors $d$ of $n$ (if such divisors exist) we have $\mu(d)=0$ by the definition of $\mu(d)$ (the third part; since such divisors must be divisible by some square of at least one prime). Now the divisors of $p_{1} p_{2} \cdots p_{r}$ are all of the form $p_{1}^{\varepsilon_{1}} p_{2}^{\varepsilon_{2}} \cdots p_{r}^{\varepsilon_{r}}$ with $\varepsilon_{i} \in\{0,1\}$ for all $i$.

## Lemma 6.96

Lemma 6.96. Suppose $n \in \mathbb{N}$. Then $\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1 .\end{cases}$
Proof. If $n=1$, then $\mu(n)=\mu(1)=1$ by the definition of $\mu(1)$ (the first part). If $n=p$ a prime, then $\sum_{d \mid p} \mu(d)=\mu(1)+\mu(p)=1+(-1)^{1}=0$, as claimed. Now suppose $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $r \geq 1$ and $\alpha_{i} \geq 1$ for all $i$. If a divisor $d$ of $n$ divides the product $p_{1} p_{2} \cdots p_{r}$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d)= \pm 1$ (the depending on how many primes are in the standard factorization of $d$, even or odd respectively). For all other divisors $d$ of $n$ (if such divisors exist) we have $\mu(d)=0$ by the definition of $\mu(d)$ (the third part; since such divisors must be divisible by some square of at least one prime). Now the divisors of $p_{1} p_{2} \cdots p_{r}$ are all of the form $p_{1}^{\varepsilon_{1}} p_{2}^{\varepsilon_{2}} \cdots p_{r}^{\varepsilon_{r}}$ with $\varepsilon_{i} \in\{0,1\}$ for all $i$.

## Lemma 6.96 (continued)

Proof (continued). There are $\binom{r}{k}$ of these divisors in which exactly $k$ of the exponents $\varepsilon_{i}$ are equal to 1 (the number of ways we can choose the subscripts for the value-one exponents, the value-zero exponents then being determined by default). Equivalently, there are $\binom{r}{k}$ divisors of $p_{1} p_{2} \cdots p_{r}$ having exactly $k$ prime factors. For each such divisor $d$ we have

$$
\mu(d)=(-1)^{k}=\left\{\begin{array}{cl}
1 & \text { if } k \text { is even } \\
-1 & \text { if } k \text { is odd }
\end{array}\right.
$$

by the definition of $\mu(d)$ (the second part). We therefore have, by the Binomial Theorem (see Theorem 5.73),


## Lemma 6.96 (continued)

Proof (continued). There are $\binom{r}{k}$ of these divisors in which exactly $k$ of the exponents $\varepsilon_{i}$ are equal to 1 (the number of ways we can choose the subscripts for the value-one exponents, the value-zero exponents then being determined by default). Equivalently, there are $\binom{r}{k}$ divisors of $p_{1} p_{2} \cdots p_{r}$ having exactly $k$ prime factors. For each such divisor $d$ we have

$$
\mu(d)=(-1)^{k}=\left\{\begin{array}{cl}
1 & \text { if } k \text { is even } \\
-1 & \text { if } k \text { is odd }
\end{array}\right.
$$

by the definition of $\mu(d)$ (the second part). We therefore have, by the Binomial Theorem (see Theorem 5.73),
$\sum_{d \mid n} \mu(d)=\sum_{d \mid p_{1} p_{2} \cdots p_{r}} \mu(d)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k}=\sum_{k=0}^{r}\binom{r}{k}(1)^{r-k}(-1)^{k}=0$, as claimed.

## Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula.
Let $f$ be an arithmetic function, and suppose $g(n)=\sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$
f(n)=\sum_{d \mid n} \mu(d) g(n / d) .
$$

Proof. First, if $d \mid n$ then $n=c d$ for $c=n / d$ is a divisor of $n$ (and vice versa). We have


## Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula.
Let $f$ be an arithmetic function, and suppose $g(n)=\sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$
f(n)=\sum_{d \mid n} \mu(d) g(n / d) .
$$

Proof. First, if $d \mid n$ then $n=c d$ for $c=n / d$ is a divisor of $n$ (and vice

$$
\begin{aligned}
& \text { versa). We have } \\
& \begin{aligned}
\sum_{d \mid n} \mu(d) g(n / d) & =\sum_{d \mid n}\left(\mu(d) \sum_{c \mid n / d} f(c)\right) \text { by the definition of } g \\
& =\sum_{d|n, c| n / d} \mu(d) f(c) \text { distributing } \\
& =\sum_{c d=n} \mu(d) f(c)=\sum_{c \mid n}\left(f(c) \sum_{d \mid n / c} \mu(d)\right) \text { factoring. }
\end{aligned} .
\end{aligned}
$$

## Theorem 6.97. Möbius-Inversion Formula (continued)

Theorem 6.97. Möbius-Inversion Formula.
Let $f$ be an arithmetic function, and suppose $g(n)=\sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$
f(n)=\sum_{d \mid n} \mu(d) g(n / d)
$$

Proof (continued). ... $\sum_{d \mid n} \mu(d) g(n / d)=\sum_{c \mid n}\left(f(c) \sum_{d \mid n / c} \mu(d)\right) . \mathrm{By}$ Lemma 6.96 we have $\sum_{d \mid n / c} \mu(d)=0$ unless $d=1$ (that is, $c=n$ ). So in the right-most term in the equation above, only the term with $c=n$ is nonzero. When $c=n$, the right-most term is $f(n) \mu(1)=f(n)$. That is,

$$
\sum_{d \mid n} \mu(d) g(n / d)=\sum_{c \mid n}\left(f(c) \sum_{d \mid n / c} \mu(d)\right)=f(n)
$$

as claimed.

## Lemma 6.98

Lemma 6.98. If $n \in \mathbb{N}$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set $C_{d}$ (where $1 \leq d \leq n$ ) to consist of those numbers in $S$ that have greatest common divisor with $n$ or $d$. That is, for given $n$ we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$. So $m \in C_{d}$ if and only if $m / d$ is relatively prime to $n / d$.

## Lemma 6.98

Lemma 6.98. If $n \in \mathbb{N}$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set $C_{d}$ (where $1 \leq d \leq n$ ) to consist of those numbers in $S$ that have greatest common divisor with $n$ or $d$. That is, for given $n$ we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$. So $m \in C_{d}$ if and only if $m / d$ is relatively prime to $n / d$. The number of positive integers less than or equal to $n / d$ and relatively prime to $n / d$ is, by definition, $\varphi(n / d)$. So the number of elements in $C_{d}$ is $\varphi(n / d)$. Since each element of $S=\{1,2, \ldots, n\}$ is in exactly one $C_{d}$, then $n=\sum_{d \mid n} \varphi(n / d)$. Now if $d \mid n$, then $n=d c$ for some $c$ where $c \mid n$ (and $c=n / d)$. So summing $\varphi(n / d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n / d)=\sum_{c \mid n} \varphi(c)$. So $n=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)$, as claimed.

## Lemma 6.98

Lemma 6.98. If $n \in \mathbb{N}$, then $\sum_{d \mid n} \varphi(d)=n$.
Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S=\{1,2, \ldots, n\}$, define the set $C_{d}$ (where $1 \leq d \leq n$ ) to consist of those numbers in $S$ that have greatest common divisor with $n$ or $d$. That is, for given $n$ we have $m \in C_{d}$ if and only if $(m, n)=d$. But $(m, n)=d$ if and only if $(m / d, n / d)=1$. So $m \in C_{d}$ if and only if $m / d$ is relatively prime to $n / d$. The number of positive integers less than or equal to $n / d$ and relatively prime to $n / d$ is, by definition, $\varphi(n / d)$. So the number of elements in $C_{d}$ is $\varphi(n / d)$. Since each element of $S=\{1,2, \ldots, n\}$ is in exactly one $C_{d}$, then $n=\sum_{d \mid n} \varphi(n / d)$. Now if $d \mid n$, then $n=d c$ for some $c$ where $c \mid n$ (and $c=n / d)$. So summing $\varphi(n / d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n / d)=\sum_{c \mid n} \varphi(c)$. So $n=\sum_{d \mid n} \varphi(n / d)=\sum_{d \mid n} \varphi(d)$, as claimed.

## Theorem 6.99

Theorem 6.99.
(i) If $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then

$$
\varphi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)
$$

(ii) $\varphi$ is multiplicative.

Proof. Define the identity function $g(n)=n$ for all $n \in \mathbb{N}$. Then by Lemma 6.98 we have $g(n)=n=\sum_{d \mid n} \varphi(d)$, so the Möbius inversion formula (with $f$ as $\varphi$ ) yields

$$
\varphi(n)=\sum_{d \mid n} \mu(d) g(n / d)=\sum_{d \mid n} \mu(d)(n / d)=\sum_{d \mid p_{1} p_{2} \cdots p_{r}} n \mu(d) / d
$$

since $\mu(d)=0$ for any divisor $d$ that is not a divisor of $p_{1} p_{2} \cdots p_{r}$, since such $d$ would not be square-free ( $\mu$ is a Möbius function).

## Theorem 6.99

Theorem 6.99.
(i) If $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then

$$
\varphi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

(ii) $\varphi$ is multiplicative.

Proof. Define the identity function $g(n)=n$ for all $n \in \mathbb{N}$. Then by Lemma 6.98 we have $g(n)=n=\sum_{d \mid n} \varphi(d)$, so the Möbius inversion formula (with $f$ as $\varphi$ ) yields

$$
\varphi(n)=\sum_{d \mid n} \mu(d) g(n / d)=\sum_{d \mid n} \mu(d)(n / d)=\sum_{d \mid p_{1} p_{2} \cdots p_{r}} n \mu(d) / d,
$$

since $\mu(d)=0$ for any divisor $d$ that is not a divisor of $p_{1} p_{2} \cdots p_{r}$, since such $d$ would not be square-free ( $\mu$ is a Möbius function).

## Theorem 6.99 (continued 1)

Proof (continued). Now $n \mu(1) / 1=n$, while if $d \mid p_{1} p_{2} \cdots p_{r}$ and $d \neq 1$ then $d$ is a product of the form $p_{i_{1}} p_{i_{2}} \cdots p_{i_{t}}$ with $1 \leq t \leq r$ and (say) $p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{t}}$ so that (by the definition of Möbius function $\mu$ ) $\mu(d)=(-1)^{t}$. Therefore

$$
\begin{aligned}
& \sum_{d \mid p_{1} p_{2} \cdots p_{r}} n \mu(d) / d=n-\sum_{i} \frac{n}{p_{1}}+\sum_{i_{1}<i_{2}} \frac{n}{p_{i_{1}} p_{i_{2}}} \\
& +\sum_{i_{1}<i_{2}<i_{3}} \frac{n}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}+\cdots+(-1)^{r} \sum_{i_{1}<i_{2}<\cdots<i_{r}} \frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}} \\
& =n\left(1-\sum_{i} \frac{1}{p_{1}}+\sum_{i_{1}<i_{2}} \frac{1}{p_{i_{1}} p_{i_{2}}}+\sum_{i_{1}<i_{2}<i_{3}} \frac{1}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}+\cdots\right. \\
& \left.+(-1)^{r} \sum_{i_{1}<i_{2}<\cdots<i_{r}} \frac{1}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}}\right)=n \prod_{i=1}^{r}\left(1=\frac{1}{p_{i}}\right) \cdots
\end{aligned}
$$

## Theorem 6.99 (continued 2)

Theorem 6.99.
(i) If $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then

$$
\varphi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

(ii) $\varphi$ is multiplicative.

Proof (continued). ... where the last equality holds by the Principle of Mathematical Induction. Therefore,

$$
\varphi(n)=\sum_{d \mid n} \mu(d) g(n / d)=\sum_{d \mid n} \mu(d)(n / d)=n \prod_{i=1}^{r}\left(1=\frac{1}{p_{i}}\right),
$$

as claimed.
(ii) This was proved in the "moreover" claim in proof of Theorem 6.59

## Theorem 6.99 (continued 2)

Theorem 6.99.
(i) If $n$ has standard factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, then

$$
\varphi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

(ii) $\varphi$ is multiplicative.

Proof (continued). ... where the last equality holds by the Principle of Mathematical Induction. Therefore,

$$
\varphi(n)=\sum_{d \mid n} \mu(d) g(n / d)=\sum_{d \mid n} \mu(d)(n / d)=n \prod_{i=1}^{r}\left(1=\frac{1}{p_{i}}\right),
$$

as claimed.
(ii) This was proved in the "moreover" claim in proof of Theorem 6.59 .

## Theorem 6.101

Theorem 6.101. If $f$ and $g$ are multiplicative functions, then $f * g$ is multiplicative.

Proof. Suppose $(a, b)=1$. Then the divisors of $a b$ are the numbers of the form $d=d_{1} d_{2}$ with $d_{1} \mid a$ and $d_{2} \mid b$. We have by the definition of $f * g$,

$$
\begin{aligned}
(f * g)(a b) & =\sum_{d \mid a b} f(d) g(a b / d)=\sum_{d_{1}\left|a, d_{2}\right| b} f\left(d_{1} d_{2}\right) g\left(a b /\left(d_{1} d_{2}\right)\right) \\
& =\sum_{d_{1}\left|a, d_{2}\right| b} f\left(d_{1}\right) f\left(d_{2}\right) g\left(a / d_{1}\right) g\left(b / d_{2}\right),
\end{aligned}
$$

because $f$ and $g$ are multiplicative.

## Theorem 6.101

Theorem 6.101. If $f$ and $g$ are multiplicative functions, then $f * g$ is multiplicative.

Proof. Suppose $(a, b)=1$. Then the divisors of $a b$ are the numbers of the form $d=d_{1} d_{2}$ with $d_{1} \mid a$ and $d_{2} \mid b$. We have by the definition of $f * g$,

$$
\begin{aligned}
(f * g)(a b) & =\sum_{d \mid a b} f(d) g(a b / d)=\sum_{d_{1}\left|a, d_{2}\right| b} f\left(d_{1} d_{2}\right) g\left(a b /\left(d_{1} d_{2}\right)\right) \\
& =\sum_{d_{1}\left|a, d_{2}\right| b} f\left(d_{1}\right) f\left(d_{2}\right) g\left(a / d_{1}\right) g\left(b / d_{2}\right),
\end{aligned}
$$

because $f$ and $g$ are multiplicative.

## Theorem 6.101 (continued)

Theorem 6.101. If $f$ and $g$ are multiplicative functions, then $f * g$ is multiplicative.

Proof (continued). So

$$
\begin{aligned}
(f * g)(a b) & =\sum_{d_{1}\left|a, d_{2}\right| b} f\left(d_{1}\right) f\left(d_{2}\right) g\left(a / d_{1}\right) g\left(b / d_{2}\right) \\
& =\left(\sum_{d_{1} \mid a} f\left(d_{1}\right) g\left(a / d_{1}\right)\right) \cdot\left(\sum_{d_{2} \mid b} f\left(d_{2}\right) g\left(b / d_{1}\right)\right) \text { factoring } \\
& =(f * g)(a) \cdot(f * g)(b),
\end{aligned}
$$

so that $f * g$ is multiplicative, as claimed.

