Mathematical Reasoning

Chapter 6. Number Theory 6.9. Perfect Numbers, Mersenne Primes, Arithmetic Functions—Proofs of Theorems

Table of contents

- Theorem 6.85
- 2 Theorem 6.89
- Corollary 6.90
 - 4 Exercise 6.93
- 5 Theorem 6.94. Euclid-Euler Theorem
- 6 Lemma 6.96
- Theorem 6.97. Möbius-Inversion Formula
- 8 Lemma 6.98
 - Diffeorem 6.99
 - D Theorem 6.101

Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then

(i)
$$f(1) = 1$$
, and
(ii) if *n* has standard factorization $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, then

$$f(n) = \prod_{i=1}^r f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \prod_{i=1}^r f(p_i^{\alpha_i}) = \prod_{i=1}^r f(p_i)^{\alpha_i}.$$

Proof. (i) By definition of "multiplicative function," there is some $n \in \mathbb{N}$ such that $f(n) \neq 0$. So $f(n) = f(1 \cdot n) = f(1)f(n)$, so dividing by nonzero f(n) gives f(1) = 1, as claimed.

Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then

(i)
$$f(1) = 1$$
, and
(ii) if *n* has standard factorization $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, then

$$f(n) = \prod_{i=1}^r f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \prod_{i=1}^r f(p_i^{\alpha_i}) = \prod_{i=1}^r f(p_i)^{\alpha_i}.$$

Proof. (i) By definition of "multiplicative function," there is some $n \in \mathbb{N}$ such that $f(n) \neq 0$. So $f(n) = f(1 \cdot n) = f(1)f(n)$, so dividing by nonzero f(n) gives f(1) = 1, as claimed.

Theorem 6.85 (continued)

Theorem 6.85. Suppose f is a multiplicative function. Then (i) f(1) = 1, and

(ii) if *n* has standard factorization $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, then

$$f(n) = \prod_{i=1}^r f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \prod_{i=1}^r f(p_i^{\alpha_i}).$$

Proof (continued). (ii) Since $n = \prod_{i=1}^{n} p_i^{\alpha_i}$, the definition of "multiplicative function" gives

"multiplicative function" gives

$$f(n) = f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \prod_{i=1}^r f(p_i^{\alpha_i}),$$

as claimed.

Theorem 6.89

Theorem 6.89. σ is a multiplicative function.

Proof. Suppose (m, n) = 1. If either m = 1 or n = 1, then $\sigma(mn) = \sigma(m)\sigma(n)$ since $\sigma(1) = 1$. So without loss of generality we can assume that both m and n are greater than 1 and so have standard factorizations $m = \prod_{i=1}^{r} p_i^{\alpha_i}$ and $n = \prod_{j=1}^{s} q_j^{\beta_j}$ with the p'a and q's distinct primes (because (m, n) = 1). Now if $d \mid mn$, then $d = \underbrace{p_1^{\nu_1} p_2^{\nu_2} \cdots p_r^{\nu_r}}_{d_1} \underbrace{q_1^{\lambda_1} q_2^{\lambda_2} \cdots q_s^{\lambda_s}}_{d_2}$ with $\nu_i \leq \alpha_i$ and $\lambda_j \leq \beta_j$ for all i and j; so $d_1 \mid m, d_2 \mid n$, and $(d_1, d_2) = 1$. Then

$$\sigma(mn) = \sum_{d \mid mn} d = \sum_{d_1 \mid m, d_2 \mid n} d_1 d_2 = \left(\sum_{d_1 \mid m} d_1\right) \left(\sum_{d_2 \mid n} d_2\right) = \sigma(m)\sigma(n),$$

as claimed

Theorem 6.89

Theorem 6.89. σ is a multiplicative function.

Proof. Suppose (m, n) = 1. If either m = 1 or n = 1, then $\sigma(mn) = \sigma(m)\sigma(n)$ since $\sigma(1) = 1$. So without loss of generality we can assume that both m and n are greater than 1 and so have standard factorizations $m = \prod_{i=1}^{r} p_i^{\alpha_i}$ and $n = \prod_{j=1}^{s} q_j^{\beta_j}$ with the p'a and q's distinct primes (because (m, n) = 1). Now if $d \mid mn$, then $d = \underbrace{p_1^{\nu_1} p_2^{\nu_2} \cdots p_r^{\nu_r}}_{d_1} \underbrace{q_1^{\lambda_1} q_2^{\lambda_2} \cdots q_s^{\lambda_s}}_{d_2}$ with $\nu_i \leq \alpha_i$ and $\lambda_j \leq \beta_j$ for all i and j; so $d_1 \mid m, d_2 \mid n$, and $(d_1, d_2) = 1$. Then

$$\sigma(mn) = \sum_{d \mid mn} d = \sum_{d_1 \mid m, d_2 \mid n} d_1 d_2 = \left(\sum_{d_1 \mid m} d_1\right) \left(\sum_{d_2 \mid n} d_2\right) = \sigma(m)\sigma(n),$$

as claimed

Corollary 6.90

Corollary 6.90. If
$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$
 then $\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{\alpha_i+1} - 1}{p_i - 1}$.

Proof. By Theorem 6.89, σ is multiplicative so we have $\sigma\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) = \prod_{i=1}^{r} \sigma(p_{i}^{\alpha_{i}})$. Now we consider $\sigma(p^{\alpha})$ for p prime and $\alpha \ge 1$. For any x we have $(x-1)(1+x+x^{2}+\cdots+x^{\alpha}) = x^{\alpha+1}-1$ (as can be shown inductively or by distribution on the left-hand side). So with x = p we have $\sigma(p^{\alpha}) = 1 + p + p^{2} + \cdots + p^{\alpha} = \frac{p^{\alpha+1}-1}{p-1}$. Then

$$\sigma(n) = \prod_{i=1}^{r} \sigma(p_i^{\alpha_i}) = \prod_{i=1}^{r} \frac{p^{\alpha+1} - 1}{p - 1},$$

as claimed.

Corollary 6.90

Corollary 6.90. If
$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$
 then $\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{\alpha_i+1} - 1}{p_i - 1}$.

Proof. By Theorem 6.89, σ is multiplicative so we have $\sigma\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}}\right) = \prod_{i=1}^{r} \sigma(p_{i}^{\alpha_{i}})$. Now we consider $\sigma(p^{\alpha})$ for p prime and $\alpha \ge 1$. For any x we have $(x-1)(1+x+x^{2}+\cdots+x^{\alpha}) = x^{\alpha+1}-1$ (as can be shown inductively or by distribution on the left-hand side). So with x = p we have $\sigma(p^{\alpha}) = 1 + p + p^{2} + \cdots + p^{\alpha} = \frac{p^{\alpha+1}-1}{p-1}$. Then

$$\sigma(n) = \prod_{i=1}^r \sigma(p_i^{\alpha_i}) = \prod_{i=1}^r \frac{p^{\alpha+1}-1}{p-1},$$

as claimed.

Exercise 6.93. Prove that if *n* is positive and composite, then $2^n - 1$ is not prime. That is, for $2^n - 1$ to be prime, it is necessary that *n* is prime.

Proof. Suppose *n* is a positive composite number, say $n = k\ell$ where *k* and ℓ are positive and greater than 1. As commented in the proof of Corollary 6.90, any all *x* we have $(x - 1)(1 + x + x^2 + \dots + x^{\alpha}) = x^{\alpha+1} - 1$. With $x = 2^k$ and $\alpha = n - 1 = k\ell - 1$ we have

$$(2^{k}-1)(1+2^{k}+2^{2k}+\cdots+2^{k\ell-1})=2^{(k\ell-1)+1}-1=2^{k\ell}-1=2^{n}-1.$$

So $2^k - 1$ (which is at least 3) is a divisor of $2^n - 1$ and $2^n - 1$ is not prime, as claimed.

Exercise 6.93. Prove that if *n* is positive and composite, then $2^n - 1$ is not prime. That is, for $2^n - 1$ to be prime, it is necessary that *n* is prime.

Proof. Suppose *n* is a positive composite number, say $n = k\ell$ where *k* and ℓ are positive and greater than 1. As commented in the proof of Corollary 6.90, any all *x* we have $(x - 1)(1 + x + x^2 + \dots + x^{\alpha}) = x^{\alpha+1} - 1$. With $x = 2^k$ and $\alpha = n - 1 = k\ell - 1$ we have

$$(2^{k}-1)(1+2^{k}+2^{2k}+\cdots+2^{k\ell-1})=2^{(k\ell-1)+1}-1=2^{k\ell}-1=2^{n}-1.$$

So $2^k - 1$ (which is at least 3) is a divisor of $2^n - 1$ and $2^n - 1$ is not prime, as claimed.

Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer *n* is perfect if and only if there is a factorization $n = 2^{p-1}(2^p - 1)$ with *p* prime and $2^p - 1$ a Mersenne prime.

Proof. First, suppose $n = 2^{p-1}(2^p - 1)$, with $2^p - 1$ a Mersenne prime. Then *n* is even and since σ is multiplicative by Theorem 6.89 $(2^p - 1 \text{ and } 2^p - 1 \text{ are certainly relatively prime})$, then $\sigma(n) = \sigma(2^{p-1})\sigma(2^p - 1)$. But $\sigma(2^{p-1}) = 1 + 2 + 2^2 + \cdots + 2^{p-1} = 2^p - 1$, and $\sigma(2^p - 1) = 2^p$ because $2^p - 1$ is prime by hypothesis (see Example 6.88).

Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer *n* is perfect if and only if there is a factorization $n = 2^{p-1}(2^p - 1)$ with *p* prime and $2^p - 1$ a Mersenne prime.

Proof. First, suppose $n = 2^{p-1}(2^p - 1)$, with $2^p - 1$ a Mersenne prime. Then *n* is even and since σ is multiplicative by Theorem 6.89 $(2^p - 1 \text{ and } 2^p - 1 \text{ are certainly relatively prime})$, then $\sigma(n) = \sigma(2^{p-1})\sigma(2^p - 1)$. But $\sigma(2^{p-1}) = 1 + 2 + 2^2 + \cdots + 2^{p-1} = 2^p - 1$, and $\sigma(2^p - 1) = 2^p$ because $2^p - 1$ is prime by hypothesis (see Example 6.88). So $\sigma(n) = \sigma(2^{p-1})\sigma(2^p - 1) = (2^p - 1) \cdot 2^p = 2 \cdot 2^{p-1}(2^p - 1) = 2n$ and hence *n* is perfect, as claimed. Notice that this is a proof of Euclid's result in Book IX, Proposition 36 of the *Elements*.

Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer *n* is perfect if and only if there is a factorization $n = 2^{p-1}(2^p - 1)$ with *p* prime and $2^p - 1$ a Mersenne prime.

Proof. First, suppose $n = 2^{p-1}(2^p - 1)$, with $2^p - 1$ a Mersenne prime. Then *n* is even and since σ is multiplicative by Theorem 6.89 $(2^p - 1 \text{ and } 2^p - 1 \text{ are certainly relatively prime})$, then $\sigma(n) = \sigma(2^{p-1})\sigma(2^p - 1)$. But $\sigma(2^{p-1}) = 1 + 2 + 2^2 + \cdots + 2^{p-1} = 2^p - 1$, and $\sigma(2^p - 1) = 2^p$ because $2^p - 1$ is prime by hypothesis (see Example 6.88). So $\sigma(n) = \sigma(2^{p-1})\sigma(2^p - 1) = (2^p - 1) \cdot 2^p = 2 \cdot 2^{p-1}(2^p - 1) = 2n$ and hence *n* is perfect, as claimed. Notice that this is a proof of Euclid's result in Book IX, Proposition 36 of the *Elements*.

Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose *n* is an even perfect number; say $n = 2^k m$ where $k \ge 1$ and *m* is odd. Since *n* is perfect by hypothesis, we have $\sigma(n) = 2n = 2^{k+1}m$. Now 2^k and *m* are relatively prime, σ is multiplicative by Theorem 6.89, and by Corollary 6.90 (with r = 1, $p_1 = 2$, and $\alpha_1 = k$) we have $\sigma(2^k) = 2^{k+1} - 1$, so we also have

$$\sigma(n) = \sigma(2^k)\sigma(m) = (2^{k+1}-1)\sigma(m).$$

Therefore $2^{k+1}m = (2^{k+1} - 1)\sigma(m)$. Since 2^{k+1} and $2^{k+1} - 1$ are relatively prime, then this implies that $2^{k+1} | \sigma(m)$, say $\sigma(m) = 2^{k+1}c$. Then $2^{k+1}m = (2^{k+1} - 1)2^{k+1}c$, which implies that $m = (2^{k+1} - 1)c$ and c is a divisor of m. Also,

$$m = (2^{k+1} - 1)c = 2^{k+1}c - c = \sigma(m) - c.$$

Therefore $\sigma(m) = m + c$.

Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose *n* is an even perfect number; say $n = 2^k m$ where $k \ge 1$ and *m* is odd. Since *n* is perfect by hypothesis, we have $\sigma(n) = 2n = 2^{k+1}m$. Now 2^k and *m* are relatively prime, σ is multiplicative by Theorem 6.89, and by Corollary 6.90 (with r = 1, $p_1 = 2$, and $\alpha_1 = k$) we have $\sigma(2^k) = 2^{k+1} - 1$, so we also have

$$\sigma(n) = \sigma(2^k)\sigma(m) = (2^{k+1}-1)\sigma(m).$$

Therefore $2^{k+1}m = (2^{k+1} - 1)\sigma(m)$. Since 2^{k+1} and $2^{k+1} - 1$ are relatively prime, then this implies that $2^{k+1} | \sigma(m)$, say $\sigma(m) = 2^{k+1}c$. Then $2^{k+1}m = (2^{k+1} - 1)2^{k+1}c$, which implies that $m = (2^{k+1} - 1)c$ and c is a divisor of m. Also,

$$m = (2^{k+1} - 1)c = 2^{k+1}c - c = \sigma(m) - c.$$

Therefore $\sigma(m) = m + c$.

Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer *n* is perfect if and only if there is a factorization $n = 2^{p-1}(2^p - 1)$ with *p* prime and $2^p - 1$ a Mersenne prime.

Proof (continued). Denote the divisors of *m* as $d_1 = 1, d_2, d_3, \ldots, d_\ell, d_{\ell+1} = m$; since *c* is a divisor of *m* and *c* < *m*, then *c* is one of $1, d_2, d_3, \ldots, d_\ell$. Since $\sigma(m) = m + c$ from above, we now have

$$m+c=\sigma(m)=1+d_2+d_3+\cdots+d_\ell+m$$

so that $c = 1 + d_2 + d_3 + \cdots + d_\ell$ where c is one of the terms on the right-hand side of this equation. This can only be the case if c = 1 (for if $c \neq 1$, then c = 1 + c + (possibly other positive terms), a contradiction). So we have $m = (2^{k+1} - 1)c = 2^{k+1} - 1$ and $\sigma(m) = m + c = m + 1$. Therefore, the only divisors of m are 1 and m itself, so that m is a prime of the form $2^{k+1} - 1$. By Exercise 6.93, we see that k + 1 must be prime, say p = k + 1. Hence m is a Mersenne prime. Also, we have $n = 2^k m = 2^{p-1}(2^p - 1)$, as claimed.

Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer *n* is perfect if and only if there is a factorization $n = 2^{p-1}(2^p - 1)$ with *p* prime and $2^p - 1$ a Mersenne prime.

Proof (continued). Denote the divisors of *m* as $d_1 = 1, d_2, d_3, \ldots, d_\ell, d_{\ell+1} = m$; since *c* is a divisor of *m* and *c* < *m*, then *c* is one of $1, d_2, d_3, \ldots, d_\ell$. Since $\sigma(m) = m + c$ from above, we now have

$$m+c=\sigma(m)=1+d_2+d_3+\cdots+d_\ell+m$$

so that $c = 1 + d_2 + d_3 + \cdots + d_\ell$ where *c* is one of the terms on the right-hand side of this equation. This can only be the case if c = 1 (for if $c \neq 1$, then c = 1 + c + (possibly other positive terms), a contradiction). So we have $m = (2^{k+1} - 1)c = 2^{k+1} - 1$ and $\sigma(m) = m + c = m + 1$. Therefore, the only divisors of *m* are 1 and *m* itself, so that *m* is a prime of the form $2^{k+1} - 1$. By Exercise 6.93, we see that k + 1 must be prime, say p = k + 1. Hence *m* is a Mersenne prime. Also, we have $n = 2^k m = 2^{p-1}(2^p - 1)$, as claimed.

Lemma 6.96. Suppose $n \in \mathbb{N}$. Then $\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1. \end{cases}$

Proof. If n = 1, then $\mu(n) = \mu(1) = 1$ by the definition of $\mu(1)$ (the first part). If n = p a prime, then $\sum_{d \mid p} \mu(d) = \mu(1) + \mu(p) = 1 + (-1)^1 = 0$, as claimed. Now suppose n has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, with $r \ge 1$ and $\alpha_i \ge 1$ for all i. If a divisor d of n divides the product $p_1 p_2 \cdots p_r$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d) = \pm 1$ (the depending on how many primes are in the standard factorization of d, even or odd respectively).

Mathematical Reasoning

11 / 20

Lemma 6.96. Suppose
$$n \in \mathbb{N}$$
. Then $\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1. \end{cases}$

Proof. If n = 1, then $\mu(n) = \mu(1) = 1$ by the definition of $\mu(1)$ (the first part). If n = p a prime, then $\sum_{d \mid p} \mu(d) = \mu(1) + \mu(p) = 1 + (-1)^1 = 0$, as claimed. Now suppose *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, with r > 1 and $\alpha_i > 1$ for all *i*. If a divisor *d* of *n* divides the product $p_1 p_2 \cdots p_r$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d) = \pm 1$ (the depending on how many primes are in the standard factorization of d, even or odd respectively). For all other divisors d of n (if such divisors exist) we have $\mu(d) = 0$ by the definition of $\mu(d)$ (the third part; since such divisors must be divisible by some square of at least one prime). Now the divisors of $p_1 p_2 \cdots p_r$ are all of the form $p_1^{\varepsilon_1} p_2^{\varepsilon_2} \cdots p_r^{\varepsilon_r}$ with $\varepsilon_i \in \{0, 1\}$ for all *i*.

Lemma 6.96. Suppose
$$n \in \mathbb{N}$$
. Then $\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1. \end{cases}$

Proof. If n = 1, then $\mu(n) = \mu(1) = 1$ by the definition of $\mu(1)$ (the first part). If n = p a prime, then $\sum_{d \mid p} \mu(d) = \mu(1) + \mu(p) = 1 + (-1)^1 = 0$, as claimed. Now suppose *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, with r > 1 and $\alpha_i > 1$ for all *i*. If a divisor *d* of *n* divides the product $p_1 p_2 \cdots p_r$, then by the definition of $\mu(d)$ (the second part) we have $\mu(d) = \pm 1$ (the depending on how many primes are in the standard factorization of d, even or odd respectively). For all other divisors d of n (if such divisors exist) we have $\mu(d) = 0$ by the definition of $\mu(d)$ (the third part; since such divisors must be divisible by some square of at least one prime). Now the divisors of $p_1 p_2 \cdots p_r$ are all of the form $p_1^{\varepsilon_1} p_2^{\varepsilon_2} \cdots p_r^{\varepsilon_r}$ with $\varepsilon_i \in \{0, 1\}$ for all *i*.

Lemma 6.96 (continued)

Proof (continued). There are $\binom{r}{k}$ of these divisors in which exactly k of the exponents ε_i are equal to 1 (the number of ways we can choose the subscripts for the value-one exponents, the value-zero exponents then being determined by default). Equivalently, there are $\binom{r}{k}$ divisors of $p_1p_2\cdots p_r$ having exactly k prime factors. For each such divisor d we have

$$\mu(d) = (-1)^k = \begin{cases} 1 & \text{if } k \text{ is even} \\ -1 & \text{if } k \text{ is odd,} \end{cases}$$

by the definition of $\mu(d)$ (the second part). We therefore have, by the Binomial Theorem (see Theorem 5.73),

$$\sum_{d \mid n} \mu(d) = \sum_{d \mid p_1 p_2 \cdots p_r} \mu(d) = \sum_{k=0}^r \binom{r}{k} (-1)^k = \sum_{k=0}^r \binom{r}{k} (1)^{r-k} (-1)^k = 0,$$

as claimed.

Lemma 6.96 (continued)

Proof (continued). There are $\binom{r}{k}$ of these divisors in which exactly k of the exponents ε_i are equal to 1 (the number of ways we can choose the subscripts for the value-one exponents, the value-zero exponents then being determined by default). Equivalently, there are $\binom{r}{k}$ divisors of $p_1p_2\cdots p_r$ having exactly k prime factors. For each such divisor d we have

$$\mu(d) = (-1)^k = \left\{egin{array}{cc} 1 & ext{if k is even} \ -1 & ext{if k is odd,} \end{array}
ight.$$

by the definition of $\mu(d)$ (the second part). We therefore have, by the Binomial Theorem (see Theorem 5.73),

$$\sum_{d \mid n} \mu(d) = \sum_{d \mid p_1 p_2 \cdots p_r} \mu(d) = \sum_{k=0}^r \binom{r}{k} (-1)^k = \sum_{k=0}^r \binom{r}{k} (1)^{r-k} (-1)^k = 0,$$

as claimed.

Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula.

Let f be an arithmetic function, and suppose $g(n) = \sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$f(n) = \sum_{d \mid n} \mu(d)g(n/d).$$

Proof. First, if $d \mid n$ then n = cd for c = n/d is a divisor of n (and vice versa). We have

$$\sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \left(\mu(d) \sum_{c \mid n/d} f(c) \right) \text{ by the definition of } g$$
$$= \sum_{d \mid n, c \mid n/d} \mu(d)f(c) \text{ distributing}$$
$$= \sum_{cd=n} \mu(d)f(c) = \sum_{c \mid n} \left(f(c) \sum_{d \mid n/c} \mu(d) \right) \text{ factoring.}$$

Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula.

Let f be an arithmetic function, and suppose $g(n) = \sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$f(n) = \sum_{d \mid n} \mu(d)g(n/d).$$

Proof. First, if $d \mid n$ then n = cd for c = n/d is a divisor of n (and vice versa). We have

$$\sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \left(\mu(d) \sum_{c \mid n/d} f(c) \right) \text{ by the definition of } g$$
$$= \sum_{d \mid n, c \mid n/d} \mu(d)f(c) \text{ distributing}$$
$$= \sum_{cd=n} \mu(d)f(c) = \sum_{c \mid n} \left(f(c) \sum_{d \mid n/c} \mu(d) \right) \text{ factoring.}$$

Theorem 6.97. Möbius-Inversion Formula (continued)

Theorem 6.97. Möbius-Inversion Formula.

Let f be an arithmetic function, and suppose $g(n) = \sum_{d \mid n} f(d)$ for all $n \in \mathbb{N}$. Then

$$f(n) = \sum_{d \mid n} \mu(d)g(n/d).$$

Proof (continued). ... $\sum_{d \mid n} \mu(d)g(n/d) = \sum_{c \mid n} \left(f(c) \sum_{d \mid n/c} \mu(d)\right)$. By Lemma 6.96 we have $\sum_{d \mid n/c} \mu(d) = 0$ unless d = 1 (that is, c = n). So in the right-most term in the equation above, only the term with c = n is nonzero. When c = n, the right-most term is $f(n)\mu(1) = f(n)$. That is,

$$\sum_{d \mid n} \mu(d)g(n/d) = \sum_{c \mid n} \left(f(c) \sum_{d \mid n/c} \mu(d) \right) = f(n),$$

as claimed.

Lemma 6.98. If $n \in \mathbb{N}$, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S = \{1, 2, ..., n\}$, define the set C_d (where $1 \le d \le n$) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1. So $m \in C_d$ if and only if m/d is relatively prime to n/d.

Lemma 6.98. If $n \in \mathbb{N}$, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S = \{1, 2, ..., n\}$, define the set C_d (where 1 < d < n) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1. So $m \in C_d$ if and only if m/d is relatively prime to n/d. The number of positive integers less than or equal to n/d and relatively prime to n/d is, by definition, $\varphi(n/d)$. So the number of elements in C_d is $\varphi(n/d)$. Since each element of $S = \{1, 2, \dots, n\}$ is in exactly one C_d , then $n = \sum_{d \mid n} \varphi(n/d)$. Now if $d \mid n$, then n = dc for some c where $c \mid n$ (and c = n/d). So summing $\varphi(n/d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n/d) = \sum_{c \mid n} \varphi(c)$. So $n = \sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$, as claimed.

Lemma 6.98. If
$$n \in \mathbb{N}$$
, then $\sum_{d \mid n} \varphi(d) = n$.

Proof. Let $n \in \mathbb{N}$ be given. For the set of integers $S = \{1, 2, ..., n\}$, define the set C_d (where 1 < d < n) to consist of those numbers in S that have greatest common divisor with n or d. That is, for given n we have $m \in C_d$ if and only if (m, n) = d. But (m, n) = d if and only if (m/d, n/d) = 1. So $m \in C_d$ if and only if m/d is relatively prime to n/d. The number of positive integers less than or equal to n/d and relatively prime to n/d is, by definition, $\varphi(n/d)$. So the number of elements in C_d is $\varphi(n/d)$. Since each element of $S = \{1, 2, \dots, n\}$ is in exactly one C_d , then $n = \sum_{d \mid n} \varphi(n/d)$. Now if $d \mid n$, then n = dc for some c where $c \mid n$ (and c = n/d). So summing $\varphi(n/d)$ over all $d \mid n$, is equivalent to summing $\varphi(c)$ over all $c \mid n$. That is, $\sum_{d \mid n} \varphi(n/d) = \sum_{c \mid n} \varphi(c)$. So $n = \sum_{d \mid n} \varphi(n/d) = \sum_{d \mid n} \varphi(d)$, as claimed.

Theorem 6.99

Theorem 6.99.

(i) If *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

(ii) φ is multiplicative.

Proof. Define the identity function g(n) = n for all $n \in \mathbb{N}$. Then by Lemma 6.98 we have $g(n) = n = \sum_{d \mid n} \varphi(d)$, so the Möbius inversion formula (with f as φ) yields

$$\varphi(n) = \sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \mu(d)(n/d) = \sum_{d \mid p_1 p_2 \cdots p_r} n\mu(d)/d,$$

since $\mu(d) = 0$ for any divisor d that is not a divisor of $p_1 p_2 \cdots p_r$, since such d would not be square-free (μ is a Möbius function).

Theorem 6.99

Theorem 6.99.

(i) If *n* has standard factorization $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

(ii) φ is multiplicative.

Proof. Define the identity function g(n) = n for all $n \in \mathbb{N}$. Then by Lemma 6.98 we have $g(n) = n = \sum_{d \mid n} \varphi(d)$, so the Möbius inversion formula (with f as φ) yields

$$\varphi(n) = \sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \mu(d)(n/d) = \sum_{d \mid p_1 p_2 \cdots p_r} n\mu(d)/d,$$

since $\mu(d) = 0$ for any divisor d that is not a divisor of $p_1 p_2 \cdots p_r$, since such d would not be square-free (μ is a Möbius function).

Theorem 6.99 (continued 1)

Proof (continued). Now $n\mu(1)/1 = n$, while if $d \mid p_1p_2 \cdots p_r$ and $d \neq 1$ then d is a product of the form $p_{i_1}p_{i_2} \cdots p_{i_t}$ with $1 \leq t \leq r$ and (say) $p_{i_1} < p_{i_2} < \cdots < p_{i_t}$ so that (by the definition of Möbius function μ) $\mu(d) = (-1)^t$. Therefore

Theorem 6.99 (continued 2)

Theorem 6.99.

(i) If *n* has standard factorization $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

(ii) φ is multiplicative.

Proof (continued). ... where the last equality holds by the Principle of Mathematical Induction. Therefore,

$$\varphi(n) = \sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \mu(d)(n/d) = n \prod_{i=1}^{r} \left(1 = \frac{1}{p_i}\right),$$

as claimed.

(ii) This was proved in the "moreover" claim in proof of Theorem 6.59.

Theorem 6.99 (continued 2)

Theorem 6.99.

(i) If *n* has standard factorization $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r}$, then

$$\varphi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right).$$

(ii) φ is multiplicative.

Proof (continued). ... where the last equality holds by the Principle of Mathematical Induction. Therefore,

$$\varphi(n) = \sum_{d \mid n} \mu(d)g(n/d) = \sum_{d \mid n} \mu(d)(n/d) = n \prod_{i=1}^{r} \left(1 = \frac{1}{p_i}\right),$$

as claimed.

(ii) This was proved in the "moreover" claim in proof of Theorem 6.59.

Theorem 6.101

Theorem 6.101. If f and g are multiplicative functions, then f * g is multiplicative.

Proof. Suppose (a, b) = 1. Then the divisors of ab are the numbers of the form $d = d_1d_2$ with $d_1 | a$ and $d_2 | b$. We have by the definition of f * g,

$$(f * g)(ab) = \sum_{d \mid ab} f(d)g(ab/d) = \sum_{d_1 \mid a, d_2 \mid b} f(d_1d_2)g(ab/(d_1d_2))$$

$$= \sum_{d_1 \mid a, d_2 \mid b} f(d_1) f(d_2) g(a/d_1) g(b/d_2),$$

because f and g are multiplicative.

Theorem 6.101. If f and g are multiplicative functions, then f * g is multiplicative.

Proof. Suppose (a, b) = 1. Then the divisors of ab are the numbers of the form $d = d_1d_2$ with $d_1 | a$ and $d_2 | b$. We have by the definition of f * g,

$$(f * g)(ab) = \sum_{d \mid ab} f(d)g(ab/d) = \sum_{d_1 \mid a, d_2 \mid b} f(d_1d_2)g(ab/(d_1d_2))$$
$$= \sum_{d_1 \mid a, d_2 \mid b} f(d_1)f(d_2)g(a/d_1)g(b/d_2),$$

because f and g are multiplicative.

Theorem 6.101 (continued)

Theorem 6.101. If f and g are multiplicative functions, then f * g is multiplicative.

Proof (continued). So

$$(f * g)(ab) = \sum_{d_1 \mid a, d_2 \mid b} f(d_1)f(d_2)g(a/d_1)g(b/d_2)$$

= $\left(\sum_{d_1 \mid a} f(d_1)g(a/d_1)\right) \cdot \left(\sum_{d_2 \mid b} f(d_2)g(b/d_1)\right)$ factoring
= $(f * g)(a) \cdot (f * g)(b),$

so that f * g is multiplicative, as claimed.