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Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then
(i) f(1) =1, and

,
(i) if n has standard factorization n = Hp,.o", then
i=1

fin)=]]f ( p,-“") =[] fe) =TI f(p)™.
i=1 1 i=1

i= i=1

Mathematical Reasoning March 3, 2022

3/ 20



Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then
(i) f(1) =1, and

r

(i) if n has standard factorization n = Hp,.o", then
i=1

r

fin)=]]f ( p,-“") =[] fe) =TI f(p)™.
i=1 1 i=1 i=1

i=

Proof. (i) By definition of “multiplicative function,” there is some n € N
such that f(n) # 0. So f(n) = f(1-n) = f(1)f(n), so dividing by nonzero
f(n) gives (1) =1, as claimed.
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Theorem 6.85 (continued)

Theorem 6.85. Suppose f is a multiplicative function. Then
(i) f(1) =1, and

,
(i) if n has standard factorization n = pr"', then
i=1

f(n)=1[* (HP?’) = [T
i=1 i=1 i=1

r

Proof (continued). (ii) Since n = Hpio"', the definition of
i=1

“multiplicative function” gives

f(n)=f (H/ﬁ”) =TI,
i=1 i=1

as claimed.
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Theorem 6.89

Theorem 6.89. o is a multiplicative function.
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Theorem 6.89

Theorem 6.89. o is a multiplicative function.

Proof. Suppose (m,n) = 1. If either m =1 or n =1, then

o(mn) = o(m)o(n) since (1) = 1. So without loss of generality we can
assume that both m and n are greater than 1 and so have standard
factorizations m = [[i_; pj" and n = []7_, qjﬁj with the p'a and ¢'s
distinct primes (because (m, n) = 1). Now if d | mn, then

V1 L2

d=pi'py - p/ qi‘lq%2 e qus with v; <« and \; < 3; for all i and j;

di b
so di|m, d>|n, and (d1,d>) = 1. Then

omn)=> " d= >  dd=[>Y || d]|=0c(ma(n),

d|mn di|myda|n di|m da|n
as claimed O]
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Corollary 6.90

,
Corollary 6.90. If n= | | pi* then o(n) = | | —->—
y II;I]_ ] ( ) E pi — 1
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Corollary 6.90

Corollary 6.90. If n = | | p{ then o(n) = Pt —1
i=1 i Pl
Proof. By Theorem 6.89, o is multiplicative so we have
o (IT21 p) =T1i—1 o(p{"). Now we consider o(p®) for p prime and
a > 1. For any x we have (x — 1)(1 + x +x2 + -+ + x¥) = x®T1 — 1 (as
can be shown inductively or by distribution on the left-hand side). So with

pa+1_1
x=pwe have o(p®) =1+ p+p> +- +po‘:71.Then
p_
r rooa+l
i p —1
:HU(P;OC):H?,
i=1 -1 P
as claimed. ]
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Exercise 6.93

Exercise 6.93. Prove that if n is positive and composite, then 27 — 1 is
not prime. That is, for 2" — 1 to be prime, it is necessary that n is prime.
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Exercise 6.93

Exercise 6.93. Prove that if n is positive and composite, then 27 — 1 is
not prime. That is, for 2" — 1 to be prime, it is necessary that n is prime.

Proof. Suppose n is a positive composite number, say n = k¢ where k and
¢ are positive and greater than 1. As commented in the proof of Corollary
6.90, any all x we have (x — 1)(L + x +x? + -+ + x¥) = x*T1 — 1. With
x=2Kand a =n—1=k{—1 we have

(2/( _ 1)(1 + 2/( 4 22/( Lt 2/((—1) — 2(k€—1)+1 1= 2/(@ 1= 2n 1.

So 2k — 1 (which is at least 3) is a divisor of 2" — 1 and 2" — 1 is not
prime, as claimed. O
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.

Proof. First, suppose n = 2P~1(2P — 1), with 2P — 1 a Mersenne prime.
Then n is even and since o is multiplicative by Theorem 6.89 (2 — 1 and
2P — 1 are certainly relatively prime), then o(n) = o(2P~1)o (2P — 1). But
o(2P )y =1+4+2+422+... 42,71 =2P — 1, and 0(2P — 1) = 2P because
2P — 1 is prime by hypothesis (see Example 6.88).
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.

Proof. First, suppose n = 2P~1(2P — 1), with 2P — 1 a Mersenne prime.
Then n is even and since o is multiplicative by Theorem 6.89 (2 — 1 and
2P — 1 are certainly relatively prime), then o(n) = o(2P~1)o (2P — 1). But
o(2P )y =1+4+2+422+... 42,71 =2P — 1, and 0(2P — 1) = 2P because
2P — 1 is prime by hypothesis (see Example 6.88). So

o(n) =o(2P71)o(2P — 1) = (2P — 1) - 2P = 2.2P71(2P — 1) = 2n and
hence n is perfect, as claimed. Notice that this is a proof of Euclid’s result
in Book IX, Proposition 36 of the Elements.
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Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose n is an even perfect number; say
n = 2Km where k > 1 and m is odd. Since n is perfect by hypothesis, we
have o(n) = 2n = 2k*1m. Now 2% and m are relatively prime, o is
multiplicative by Theorem 6.89, and by Corollary 6.90 (with r =1, p; = 2,
and a1 = k) we have 0(2K) = 2k¥1 — 1, so we also have

a(n) = a(2)o(m) = (2571 — 1)a(m).

Therefore 261 m = (2K — 1)o(m).
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Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose n is an even perfect number; say
n = 2Km where k > 1 and m is odd. Since n is perfect by hypothesis, we
have o(n) = 2n = 2k*1m. Now 2% and m are relatively prime, o is
multiplicative by Theorem 6.89, and by Corollary 6.90 (with r =1, p; = 2,
and a1 = k) we have 0(2K) = 2k¥1 — 1, so we also have

a(n) = a(2)o(m) = (2571 — 1)a(m).

Therefore 2kt m = (2k+1 — 1)o(m). Since 21 and 251 — 1 are
relatively prime, then this implies that 25*1 | o(m), say o(m) = 2k*1c.
Then 2k+1m = (2k+1 — 1)2k*1¢, which implies that m = (21 — 1)c and
c is a divisor of m. Also,

m= (21 —1)c=21c—c=0o(m) —c

Therefore o(m) = m+ c.
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Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer n is perfect if and only if there is a factorization
n=2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.

Proof (continued). Denote the divisors of m as

di =1,dr,d3,...,dp,dpy1 = m; since c is a divisor of m and ¢ < m, then
cisoneof 1,dp,d3,...,ds. Since o(m) = m+ c from above, we now have

m+c=o(m =14+dr+ds+---+d;+m,

sothat c =1+ dr + d3 + --- + dp where c is one of the terms on the
right-hand side of this equation. This can only be the case if ¢ =1 (for if
c #1, then ¢ =1+ c + (possibly other positive terms), a contradiction).
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Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.

A positive even integer n is perfect if and only if there is a factorization
n=2P~1(2P — 1) with p prime and 2P — 1 a Mersenne prime.

Proof (continued). Denote the divisors of m as

di =1,dr,d3,...,dp,dpy1 = m; since c is a divisor of m and ¢ < m, then
cisoneof 1,dp,d3,...,ds. Since o(m) = m+ c from above, we now have

m+c=o(m =14+dr+ds+---+d;+m,

sothat c =1+ dr + d3 + --- + dp where c is one of the terms on the
right-hand side of this equation. This can only be the case if ¢ =1 (for if
c #1, then ¢ =1+ c + (possibly other positive terms), a contradiction).
So we have m = (2Kt —1)c =21 —land s(m)=m+c=m+ 1.
Therefore, the only divisors of m are 1 and m itself, so that m is a prime of
the form 2k+1 — 1. By Exercise 6.93, we see that k + 1 must be prime, say
p =k + 1. Hence m is a Mersenne prime. Also, we have

n=2km = 2P=1(2P — 1), as claimed. O
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Lemma 6.96

Lemma 6.96. Suppose n € N. Then Zu(d) = { é :i Z i i
d|n .
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Lemma 6.96

Lemma 6.96. Suppose n € N. Then Zu(d) = { é :i Z i i
d|n .

Proof. If n =1, then pu(n) = p(1) = 1 by the definition of x(1) (the first
part). If n=p a prime, then >_, , u(d) = p(1) + p(p) = 1 + (-1t =0,
as claimed. Now suppose n has standard factorization pj*py? - - - p®, with
r>1and a; > 1 for all i. If a divisor d of n divides the product

p1p2 - - - pr, then by the definition of 1(d) (the second part) we have

u(d) = £1 (the depending on how many primes are in the standard

factorization of d, even or odd respectively).
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Lemma 6.96

Lemma 6.96. Suppose n € N. Then Zu(d) = { é :i Z i i
d|n .

Proof. If n =1, then pu(n) = p(1) = 1 by the definition of x(1) (the first
part). If n=p a prime, then >_, , u(d) = p(1) + p(p) = 1 + (-1t =0,
as claimed. Now suppose n has standard factorization pj*py? - - - p®, with
r>1and a; > 1 for all i. If a divisor d of n divides the product

p1p2 - - - pr, then by the definition of 1(d) (the second part) we have

u(d) = £1 (the depending on how many primes are in the standard
factorization of d, even or odd respectively). For all other divisors d of n
(if such divisors exist) we have p(d) = 0 by the definition of p(d) (the
third part; since such divisors must be divisible by some square of at least
one prime). Now the divisors of pip; - - - p, are all of the form

pitp5? -+ pir with g € {0,1} for all /.
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Lemma 6.96

Lemma 6.96 (continued)

Proof (continued). There are (;) of these divisors in which exactly k of

the exponents ¢; are equal to 1 (the number of ways we can choose the
subscripts for the value-one exponents, the value-zero exponents then
being determined by default). Equivalently, there are (}) divisors of
pip2 - - - pr having exactly k prime factors.
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Lemma 6.96

Lemma 6.96 (continued)

Proof (continued). There are (;) of these divisors in which exactly k of
the exponents ¢; are equal to 1 (the number of ways we can choose the
subscripts for the value-one exponents, the value-zero exponents then
being determined by default). Equivalently, there are (}) divisors of

pip2 - - - pr having exactly k prime factors. For each such divisor d we have

vk 1 if kis even
u(d) = (=1) { —1 if k is odd,

by the definition of u(d) (the second part). We therefore have, by the
Binomial Theorem (see Theorem 5.73),

r r

Sue= 3 @)=Y (1) =3 ()t =o.

d|pip2--pr k=0 k=0
as claimed. O
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Theorem 6.97. Mobius-Inversion Formula

Theorem 6.97. Maobius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =>_;, f(d) for all

n € N. Then
Z,u g(n/d).
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Theorem 6.97. Mobius-Inversion Formula

Theorem 6.97. Mobius-Inversion Formula

Theorem 6.97. Maobius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =>_;, f(d) for all

n € N. Then
Z,u g(n/d).

Proof. First, if d|n then n= cd for c = n/d is a divisor of n (and vice
versa). We have

Zu g(n/d) = Z wu(d) Z f(c) | by the definition of g
d|n c|n/d

= Z u(d)f(c) distributing
d|n, c|n/d

- Z p(d)f(c) :Z f(c) Z wu(d) | factoring.

cd=n cln d|n/c
Mathematical Reasoning March 3, 2022 13 /20



Theorem 6.97. Mobius-Inversion Formula

Theorem 6.97. Mobius-Inversion Formula (continued)

Theorem 6.97. Maobius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =>_;, f(d) for all

n € N. Then
Z,u g(n/d).

Proof (continued). ... > u(d)g(n/d)=> [ f(c) > u(d)|. By
d|n cln d|n/c

Lemma 6.96 we have >,/ #(d) =0 unless d =1 (that is, ¢ = n). So

in the right-most term in the equation above, only the term with c = n is

nonzero. When ¢ = n, the right-most term is f(n)u(1) = f(n). That is,

Zu gln/d)=3 | f(c) Y uld) ] =1(n),

cln d|n/c

as claimed. ]
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Lemma 6.98

Lemma 6.98. If n € N, then Z(p(d) =n.
d|n
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Lemma 6.98

Lemma 6.98

Lemma 6.98. If n € N, then Z(p(d) =n.
d|n

Proof. Let n € N be given. For the set of integers S = {1,2,...,n},
define the set Cy (where 1 < d < n) to consist of those numbers in S that
have greatest common divisor with n or d. That is, for given n we have

m € Cq if and only if (m, n) = d. But (m,n) = d if and only if
(m/d,n/d) =1. So m € Cy4 if and only if m/d is relatively prime to n/d.
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Lemma 6.98

Lemma 6.98. If n € N, then Z(p(d) =n.
d|n

Proof. Let n € N be given. For the set of integers S = {1,2,...,n},
define the set Cy (where 1 < d < n) to consist of those numbers in S that
have greatest common divisor with n or d. That is, for given n we have

m € Cq if and only if (m, n) = d. But (m,n) = d if and only if
(m/d,n/d) =1. So m € Cy4 if and only if m/d is relatively prime to n/d.
The number of positive integers less than or equal to n/d and relatively
prime to n/d is, by definition, ¢(n/d). So the number of elements in C, is
@w(n/d). Since each element of S = {1,2,...,n} is in exactly one Cy, then
n=7> g4 n¢(n/d). Now if d[n, then n = dc for some c where c|n (and
¢ =n/d). So summing ¢(n/d) over all d|n, is equivalent to summing
¢(c) overall c[n. Thatis, >y ,¢(n/d) =3¢ ,¢(c). So
n=7>giap(n/d) =34 ,p(d), as claimed. O
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Theorem 6.99

Theorem 6.99.
(i) If n has standard factorization pypy? - -- p&r, then

gp(n):nIljl(l—;).

(ii) ¢ is multiplicative.
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Theorem 6.99

Theorem 6.99.
(i) If n has standard factorization pypy? - -- p&r, then

n):niljl<l—;i>.

Proof. Define the identity function g(n) = n for all n € N. Then by
Lemma 6.98 we have g(n) = n =34, ,¢(d), so the Mdbius inversion
formula (with f as ¢) yields

Zu g(n/d) = Zu (n/dy=">_ nu(d)/d,

d|pip2-pr

(ii) ¢ is multiplicative.

since u(d) = 0 for any divisor d that is not a divisor of p1ps - - - p;, since
such d would not be square-free (i is a M&bius function).
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Theorem 6.99

Theorem 6.99 (continued 1)

Proof (continued). Now nu(1)/1 = n, while if d | p1p2---p, and d # 1
then d is a product of the form pj p;, - - - pj, with 1 < t < r and (say)
pi, < pi, < -+ < pj, so that (by the definition of Mébius function p)

p(d) = (—=1)%. Therefore

Y2 Y

d|pip2-pr n<i2
n n
ek (1) Y
WEme s PiPiPis heteci PP P
1
=n Z*+Z D Dty
11<I pllplz 11<i2<i3 p/1P12P13

e ‘”H(1‘>

N<ip<-<ir
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Theorem 6.99 (continued 2)

Theorem 6.99.
(i) If n has standard factorization pypy? - -- p&r, then

o(n) = nﬁ (1 - 1)

pi

(ii) ¢ is multiplicative.

Proof (continued). ...where the last equality holds by the Principle of
Mathematical Induction. Therefore,

Zu g(n/d) = Zu(d)(n/d)znﬂ(b;),
d|n i=1 !

as claimed.
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Theorem 6.99 (continued 2)

Theorem 6.99.
(i) If n has standard factorization pypy? - -- p&r, then

o(n) = nﬁ (1 - ;)

(ii) ¢ is multiplicative.

Proof (continued). ...where the last equality holds by the Principle of
Mathematical Induction. Therefore,

Zu g(n/d) = Zu(d)(n/d)znﬂ(b;),
d|n i=1 !

as claimed.

(ii) This was proved in the “moreover” claim in proof of Theorem
6.59. 0
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Theorem 6.101

Theorem 6.101. If f and g are multiplicative functions, then f x g is
multiplicative.

Mathematical Reasoning March 3, 2022 19 /20



Theorem 6.101

Theorem 6.101

Theorem 6.101. If f and g are multiplicative functions, then f x g is
multiplicative.

Proof. Suppose (a, b) = 1. Then the divisors of ab are the numbers of the
form d = did> with dj | a and dy | b. We have by the definition of f x g,

(f = g)(ab) Z f(d)g(ab/d) = Z f(didz2)g(ab/(d1c2))

d|ab dila, do|b
= > f(d)f(dr)g(a/ch)g(b/ ),
d1|a,d2|b

because f and g are multiplicative.
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Theorem 6.101 (continued)

Theorem 6.101. If f and g are multiplicative functions, then f x g is
multiplicative.

Proof (continued). So

(Frg)ab) = Y f(ch)f(do)g(a/ch)g(b/cb)

di|a, do|b
= | D f(d)g(a/dh) | - | Y f(d2)g(b/dh) | factoring
c/1|a dz‘b
= (f=g)(a)-(f =g)(b),
so that f % g is multiplicative, as claimed. O
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