
Mathematical Reasoning

March 3, 2022

Chapter 6. Number Theory
6.9. Perfect Numbers, Mersenne Primes, Arithmetic Functions—Proofs of

Theorems

() Mathematical Reasoning March 3, 2022 1 / 20



Table of contents

1 Theorem 6.85

2 Theorem 6.89

3 Corollary 6.90

4 Exercise 6.93

5 Theorem 6.94. Euclid-Euler Theorem

6 Lemma 6.96
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Theorem 6.85

Theorem 6.85

Theorem 6.85. Suppose f is a multiplicative function. Then

(i) f (1) = 1, and

(ii) if n has standard factorization n =
r∏

i=1

pαi
i , then

f (n) =
r∏

i=1

f

(
r∏

i=1

pαi
i

)
=

r∏
i=1

f (pαi
i ) =

r∏
i=1

f (pi )
αi .

Proof. (i) By definition of “multiplicative function,” there is some n ∈ N
such that f (n) 6= 0. So f (n) = f (1 · n) = f (1)f (n), so dividing by nonzero
f (n) gives f (1) = 1, as claimed.
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Theorem 6.85

Theorem 6.85 (continued)

Theorem 6.85. Suppose f is a multiplicative function. Then

(i) f (1) = 1, and

(ii) if n has standard factorization n =
r∏

i=1

pαi
i , then

f (n) =
r∏

i=1

f

(
r∏

i=1

pαi
i

)
=

r∏
i=1

f (pαi
i ).

Proof (continued). (ii) Since n =
r∏

i=1

pαi
i , the definition of

“multiplicative function” gives

f (n) = f

(
r∏

i=1

pαi
i

)
=

r∏
i=1

f (pαi
i ),

as claimed.
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Theorem 6.89

Theorem 6.89

Theorem 6.89. σ is a multiplicative function.

Proof. Suppose (m, n) = 1. If either m = 1 or n = 1, then
σ(mn) = σ(m)σ(n) since σ(1) = 1. So without loss of generality we can
assume that both m and n are greater than 1 and so have standard

factorizations m =
∏r

i=1 pαi
i and n =

∏s
j=1 q

βj

j with the p’a and q’s
distinct primes (because (m, n) = 1). Now if d |mn, then
d = pν1

1 pν2
2 · · · pνr

r︸ ︷︷ ︸
d1

qλ1
1 qλ2

2 · · · qλs
s︸ ︷︷ ︸

d2

with νi ≤ αi and λj ≤ βj for all i and j ;

so d1 |m, d2 | n, and (d1, d2) = 1. Then

σ(mn) =
∑

d |mn

d =
∑

d1 |m,d2 | n

d1d2 =

∑
d1 |m

d1

∑
d2 | n

d2

 = σ(m)σ(n),

as claimed
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Corollary 6.90

Corollary 6.90

Corollary 6.90. If n =
r∏

i=1

pαi
i then σ(n) =

r∏
i=1

pαi+1
i − 1

pi − 1
.

Proof. By Theorem 6.89, σ is multiplicative so we have
σ
(∏r

i=1 pαi
i

)
=
∏r

i=1 σ(pαi
i ). Now we consider σ(pα) for p prime and

α ≥ 1. For any x we have (x − 1)(1 + x + x2 + · · ·+ xα) = xα+1 − 1 (as
can be shown inductively or by distribution on the left-hand side). So with

x = p we have σ(pα) = 1 + p + p2 + · · ·+ pα =
pα+1 − 1

p − 1
. Then

σ(n) =
r∏

i=1

σ(pαi
i ) =

r∏
i=1

pα+1 − 1

p − 1
,

as claimed.
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Exercise 6.93

Exercise 6.93

Exercise 6.93. Prove that if n is positive and composite, then 2n − 1 is
not prime. That is, for 2n − 1 to be prime, it is necessary that n is prime.

Proof. Suppose n is a positive composite number, say n = k` where k and
` are positive and greater than 1. As commented in the proof of Corollary
6.90, any all x we have (x − 1)(1 + x + x2 + · · ·+ xα) = xα+1 − 1. With
x = 2k and α = n − 1 = k`− 1 we have

(2k − 1)(1 + 2k + 22k + · · ·+ 2k`−1) = 2(k`−1)+1 − 1 = 2k` − 1 = 2n − 1.

So 2k − 1 (which is at least 3) is a divisor of 2n − 1 and 2n − 1 is not
prime, as claimed.
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2p−1(2p − 1) with p prime and 2p − 1 a Mersenne prime.

Proof. First, suppose n = 2p−1(2p − 1), with 2p − 1 a Mersenne prime.
Then n is even and since σ is multiplicative by Theorem 6.89 (2p − 1 and
2p − 1 are certainly relatively prime), then σ(n) = σ(2p−1)σ(2p − 1). But
σ(2p−1) = 1 + 2 + 22 + · · ·+ 2p−1 = 2p − 1, and σ(2p − 1) = 2p because
2p − 1 is prime by hypothesis (see Example 6.88).

So
σ(n) = σ(2p−1)σ(2p − 1) = (2p − 1) · 2p = 2 · 2p−1(2p − 1) = 2n and
hence n is perfect, as claimed. Notice that this is a proof of Euclid’s result
in Book IX, Proposition 36 of the Elements.
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem (continued 1)

Proof (continued). Conversely, suppose n is an even perfect number; say
n = 2km where k ≥ 1 and m is odd. Since n is perfect by hypothesis, we
have σ(n) = 2n = 2k+1m. Now 2k and m are relatively prime, σ is
multiplicative by Theorem 6.89, and by Corollary 6.90 (with r = 1, p1 = 2,
and α1 = k) we have σ(2k) = 2k+1 − 1, so we also have

σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m).

Therefore 2k+1m = (2k+1 − 1)σ(m). Since 2k+1 and 2k+1 − 1 are
relatively prime, then this implies that 2k+1 |σ(m), say σ(m) = 2k+1c .
Then 2k+1m = (2k+1 − 1)2k+1c , which implies that m = (2k+1 − 1)c and
c is a divisor of m. Also,

m = (2k+1 − 1)c = 2k+1c − c = σ(m)− c .

Therefore σ(m) = m + c .
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Theorem 6.94. Euclid-Euler Theorem

Theorem 6.94. Euclid-Euler Theorem (continued 2)

Theorem 6.94. Euclid-Euler Theorem.
A positive even integer n is perfect if and only if there is a factorization
n = 2p−1(2p − 1) with p prime and 2p − 1 a Mersenne prime.

Proof (continued). Denote the divisors of m as
d1 = 1, d2, d3, . . . , d`, d`+1 = m; since c is a divisor of m and c < m, then
c is one of 1, d2, d3, . . . , d`. Since σ(m) = m + c from above, we now have

m + c = σ(m) = 1 + d2 + d3 + · · ·+ d` + m,

so that c = 1 + d2 + d3 + · · ·+ d` where c is one of the terms on the
right-hand side of this equation. This can only be the case if c = 1 (for if
c 6= 1, then c = 1 + c + (possibly other positive terms), a contradiction).
So we have m = (2k+1 − 1)c = 2k+1 − 1 and σ(m) = m + c = m + 1.
Therefore, the only divisors of m are 1 and m itself, so that m is a prime of
the form 2k+1 − 1. By Exercise 6.93, we see that k + 1 must be prime, say
p = k + 1. Hence m is a Mersenne prime. Also, we have
n = 2km = 2p−1(2p − 1), as claimed.
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Lemma 6.96

Lemma 6.96

Lemma 6.96. Suppose n ∈ N. Then
∑
d | n

µ(d) =

{
1 if n = 1
0 if n > 1.

Proof. If n = 1, then µ(n) = µ(1) = 1 by the definition of µ(1) (the first
part). If n = p a prime, then

∑
d | p µ(d) = µ(1) + µ(p) = 1 + (−1)1 = 0,

as claimed. Now suppose n has standard factorization pα1
1 pα2

2 · · · pαr
r , with

r ≥ 1 and αi ≥ 1 for all i . If a divisor d of n divides the product
p1p2 · · · pr , then by the definition of µ(d) (the second part) we have
µ(d) = ±1 (the depending on how many primes are in the standard
factorization of d , even or odd respectively).

For all other divisors d of n
(if such divisors exist) we have µ(d) = 0 by the definition of µ(d) (the
third part; since such divisors must be divisible by some square of at least
one prime). Now the divisors of p1p2 · · · pr are all of the form
pε1
1 pε2

2 · · · pεr
r with εi ∈ {0, 1} for all i .
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Lemma 6.96

Lemma 6.96 (continued)

Proof (continued). There are
(r
k

)
of these divisors in which exactly k of

the exponents εi are equal to 1 (the number of ways we can choose the
subscripts for the value-one exponents, the value-zero exponents then
being determined by default). Equivalently, there are

(r
k

)
divisors of

p1p2 · · · pr having exactly k prime factors. For each such divisor d we have

µ(d) = (−1)k =

{
1 if k is even
−1 if k is odd,

by the definition of µ(d) (the second part). We therefore have, by the
Binomial Theorem (see Theorem 5.73),

∑
d | n

µ(d) =
∑

d | p1p2···pr

µ(d) =
r∑

k=0

(
r

k

)
(−1)k =

r∑
k=0

(
r

k

)
(1)r−k(−1)k = 0,

as claimed.
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Lemma 6.96 (continued)
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Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =

∑
d | n f (d) for all

n ∈ N. Then
f (n) =

∑
d | n

µ(d)g(n/d).

Proof. First, if d | n then n = cd for c = n/d is a divisor of n (and vice
versa). We have∑
d | n

µ(d)g(n/d) =
∑
d | n

µ(d)
∑

c | n/d

f (c)

 by the definition of g

=
∑

d | n, c | n/d

µ(d)f (c) distributing

=
∑
cd=n

µ(d)f (c) =
∑
c | n

f (c)
∑

d | n/c

µ(d)

 factoring.
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Theorem 6.97. Möbius-Inversion Formula

Theorem 6.97. Möbius-Inversion Formula (continued)

Theorem 6.97. Möbius-Inversion Formula.
Let f be an arithmetic function, and suppose g(n) =

∑
d | n f (d) for all

n ∈ N. Then
f (n) =

∑
d | n

µ(d)g(n/d).

Proof (continued). . . .
∑
d | n

µ(d)g(n/d) =
∑
c | n

f (c)
∑

d | n/c

µ(d)

 . By

Lemma 6.96 we have
∑

d | n/c µ(d) = 0 unless d = 1 (that is, c = n). So
in the right-most term in the equation above, only the term with c = n is
nonzero. When c = n, the right-most term is f (n)µ(1) = f (n). That is,

∑
d | n

µ(d)g(n/d) =
∑
c | n

f (c)
∑

d | n/c

µ(d)

 = f (n),

as claimed.
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Lemma 6.98

Lemma 6.98

Lemma 6.98. If n ∈ N, then
∑
d | n

ϕ(d) = n.

Proof. Let n ∈ N be given. For the set of integers S = {1, 2, . . . , n},
define the set Cd (where 1 ≤ d ≤ n) to consist of those numbers in S that
have greatest common divisor with n or d . That is, for given n we have
m ∈ Cd if and only if (m, n) = d . But (m, n) = d if and only if
(m/d , n/d) = 1. So m ∈ Cd if and only if m/d is relatively prime to n/d .

The number of positive integers less than or equal to n/d and relatively
prime to n/d is, by definition, ϕ(n/d). So the number of elements in Cd is
ϕ(n/d). Since each element of S = {1, 2, . . . , n} is in exactly one Cd , then
n =

∑
d | n ϕ(n/d). Now if d | n, then n = dc for some c where c | n (and

c = n/d). So summing ϕ(n/d) over all d | n, is equivalent to summing
ϕ(c) over all c | n. That is,

∑
d | n ϕ(n/d) =

∑
c | n ϕ(c). So

n =
∑

d | n ϕ(n/d) =
∑

d | n ϕ(d), as claimed.
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Theorem 6.99

Theorem 6.99

Theorem 6.99.
(i) If n has standard factorization pα1

1 pα2
2 · · · pαr

r , then

ϕ(n) = n
r∏

i=1

(
1− 1

pi

)
.

(ii) ϕ is multiplicative.

Proof. Define the identity function g(n) = n for all n ∈ N. Then by
Lemma 6.98 we have g(n) = n =

∑
d | n ϕ(d), so the Möbius inversion

formula (with f as ϕ) yields

ϕ(n) =
∑
d | n

µ(d)g(n/d) =
∑
d | n

µ(d)(n/d) =
∑

d | p1p2···pr

nµ(d)/d ,

since µ(d) = 0 for any divisor d that is not a divisor of p1p2 · · · pr , since
such d would not be square-free (µ is a Möbius function).
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formula (with f as ϕ) yields

ϕ(n) =
∑
d | n

µ(d)g(n/d) =
∑
d | n

µ(d)(n/d) =
∑

d | p1p2···pr

nµ(d)/d ,

since µ(d) = 0 for any divisor d that is not a divisor of p1p2 · · · pr , since
such d would not be square-free (µ is a Möbius function).
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Theorem 6.99

Theorem 6.99 (continued 1)

Proof (continued). Now nµ(1)/1 = n, while if d | p1p2 · · · pr and d 6= 1
then d is a product of the form pi1pi2 · · · pit with 1 ≤ t ≤ r and (say)
pi1 < pi2 < · · · < pit so that (by the definition of Möbius function µ)
µ(d) = (−1)t . Therefore∑

d | p1p2···pr

nµ(d)/d = n −
∑

i

n

p1
+
∑
i1<i2

n

pi1pi2

+
∑

i1<i2<i3

n

pi1pi2pi3

+ · · ·+ (−1)r
∑

i1<i2<···<ir

n

pi1pi2 · · · pir

= n

1−
∑

i

1

p1
+
∑
i1<i2

1

pi1pi2

+
∑

i1<i2<i3

1

pi1pi2pi3

+ · · ·

+(−1)r
∑

i1<i2<···<ir

1

pi1pi2 · · · pir

 = n
r∏

i=1

(
1 =

1

pi

)
. . .
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Theorem 6.99

Theorem 6.99 (continued 2)

Theorem 6.99.
(i) If n has standard factorization pα1

1 pα2
2 · · · pαr

r , then

ϕ(n) = n
r∏

i=1

(
1− 1

pi

)
.

(ii) ϕ is multiplicative.

Proof (continued). . . . where the last equality holds by the Principle of
Mathematical Induction. Therefore,

ϕ(n) =
∑
d | n

µ(d)g(n/d) =
∑
d | n

µ(d)(n/d) = n
r∏

i=1

(
1 =

1

pi

)
,

as claimed.

(ii) This was proved in the “moreover” claim in proof of Theorem
6.59.
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Theorem 6.101

Theorem 6.101

Theorem 6.101. If f and g are multiplicative functions, then f ∗ g is
multiplicative.

Proof. Suppose (a, b) = 1. Then the divisors of ab are the numbers of the
form d = d1d2 with d1 | a and d2 | b. We have by the definition of f ∗ g ,

(f ∗ g)(ab) =
∑
d | ab

f (d)g(ab/d) =
∑

d1 | a, d2 | b

f (d1d2)g(ab/(d1d2))

=
∑

d1 | a, d2 | b

f (d1)f (d2)g(a/d1)g(b/d2),

because f and g are multiplicative.
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Theorem 6.101

Theorem 6.101 (continued)

Theorem 6.101. If f and g are multiplicative functions, then f ∗ g is
multiplicative.

Proof (continued). So

(f ∗ g)(ab) =
∑

d1 | a, d2 | b

f (d1)f (d2)g(a/d1)g(b/d2)

=

∑
d1 | a

f (d1)g(a/d1)

 ·

∑
d2 | b

f (d2)g(b/d1)

 factoring

= (f ∗ g)(a) · (f ∗ g)(b),

so that f ∗ g is multiplicative, as claimed.
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