Mathematical Reasoning

Chapter 7. Complex Numbers

7.2. The Gaussian Integers—Proofs of Theorems

Introduction to Mathematical
Structures and Proofs

Second Edition

Table of contents

(1) Theorem 7.14. Division Algorithm

Theorem 7.14

Theorem 7.14. Division Algorithm in $\mathbb{Z}[i]$.
Let $\alpha, \beta \in \mathbb{Z}[i]$, with $\beta \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ such that $\alpha=\beta+r$, with $0 \leq N(r)<N(\beta)$.

Proof. The quotient α / β is of the form $u+v i$, with $u, v \in \mathbb{Q}$, since $\frac{\alpha}{\beta}=\frac{\alpha \bar{\beta}}{\bar{\beta}}=\frac{\alpha \bar{\beta}}{|\beta|^{2}}$ and the real and imaginary parts of α and $\bar{\beta}$ are integers. Thus $\alpha=\beta(u+v i)$. Sine u and v are rational, then there are integers x and y such that $|x-u| \leq 1 / 2$ and $|y-v| \leq 1 / 2$ (when u or v is $1 / 2$, then there are two choices, respectively, for x or y). So $x+y i$ is a Gaussian integer closest to α / β. Define $q=x+y i$ and $r=\alpha-\beta q$. So $\alpha=\beta q+r$, as needed. It remains to confirm that $N(r)<N(\beta)$. Now

$$
r=\alpha-\beta q=\beta(u+v i)-\beta(x+y i)=\beta((u-x)+(v-y) i),
$$

and, with $\gamma=(u-x)+(v-y) i$ for which
$N(\gamma)=(u-x)^{2}+(v-y)^{2} \leq 1 / 2, N(r)=N(\beta) N(\gamma)=N(\beta) / 2<N(\beta)$,
as claimed.

Theorem 7.14

Theorem 7.14. Division Algorithm in $\mathbb{Z}[i]$.
Let $\alpha, \beta \in \mathbb{Z}[i]$, with $\beta \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ such that $\alpha=\beta+r$, with $0 \leq N(r)<N(\beta)$.

Proof. The quotient α / β is of the form $u+v i$, with $u, v \in \mathbb{Q}$, since $\frac{\alpha}{\beta}=\frac{\alpha}{\beta} \frac{\bar{\beta}}{\bar{\beta}}=\frac{\alpha \bar{\beta}}{|\beta|^{2}}$ and the real and imaginary parts of α and $\bar{\beta}$ are integers. Thus $\alpha=\beta(u+v i)$. Sine u and v are rational, then there are integers x and y such that $|x-u| \leq 1 / 2$ and $|y-v| \leq 1 / 2$ (when u or v is $1 / 2$, then there are two choices, respectively, for x or y). So $x+y i$ is a Gaussian integer closest to α / β. Define $q=x+y i$ and $r=\alpha-\beta q$. So $\alpha=\beta q+r$, as needed. It remains to confirm that $N(r)<N(\beta)$. Now

$$
r=\alpha-\beta q=\beta(u+v i)-\beta(x+y i)=\beta((u-x)+(v-y) i)
$$

and, with $\gamma=(u-x)+(v-y) i$ for which
$N(\gamma)=(u-x)^{2}+(v-y)^{2} \leq 1 / 2, N(r)=N(\beta) N(\gamma)=N(\beta) / 2<N(\beta)$, as claimed.

