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Chapter 1. Logic

Note. In this chapter, we discuss mathematics in its broadest sense. We talk about

axioms and theorems in Section 1.1. We explore truth tables and their properties in

Section 1.2. Conditional statements are the topic of Section 1.3 and proof strategies

are given in Section 1.4. The logical equivalence of statements is covered in Section

1.5.

1.1. Statements, Propositions, Theorems

Note. We desire to make statements and give arguments that the statements are

true or false. Though we will not formally define “statement,” or even “true” or

“false,” we will operate by the standard that statements are true, false, or neither.

That is, we do not have statements that are both true and false.

Note. Our first step is to agree on the kinds of expressions which we take as

statements. Second, we classify a collection of statements as true (without proof);

these statements are the axioms and form our axiomatic system. Finally, we need

a system of rules by which we label new statements as “true” or “false”; these rules

are our laws of logic, deduction, inference, or proof. A statement which has been

proved is a theorem.
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Note. Gerstein (page 2) quotes Bertrand Russell from his autobiography:

“At the age of eleven, I began Euclid, with my brother as my tutor.

. . . From that moment until Whitehead and I finished Principia Math-

ematica, when I was thirty-eight, mathematics was my chief interest,

and my chief source of happiness. . . . I had been told that Euclid proved

things, and was much disappointed that he started with axioms. At

first I refused to accept them unless my brother could offer me some

reason for doing so, but he said: ‘If you don’t accept them we cannot

go on,’ and as I wished to go on, I reluctantly admitted them pro tem.

The doubt as to the premisses of mathematics which I felt at that mo-

ment remained with me, and determined the course of my subsequent

work.”

Bertrand Russell (May 18, 1872–February 2, 1970)

Image from the MacTutor History of Mathematics Archive

https://mathshistory.st-andrews.ac.uk/Biographies/Russell/
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Note. Russell’s Principia Mathematica, which he coauthored with Alfred North

Whitehead, is a three-volume work on the foundations of mathematics. A goal

of the work is to minimize the number of axioms and to express the proofs of

theorems in terms of symbolic logic. This project was inspired in part by the

paradoxes that were discovered in logic and set theory around the year 1900. For

a description of Russell’s paradox, see my online notes for Set Theory on Section

1.1. Introduction to Sets and for Analysis 1 (MATH 4217/5217) on Section 1.1.

Sets and Functions. When Russell expresses disappointment over starting with the

foundational axioms, he is looking for an a priori starting point (Immanuel Kant

describes a priori knowledge in his 1787 Critique of Pure Reason as “knowledge

that is absolutely independent of all experience”). His expressed doubt about the

axioms implies his motivation to minimize such assumptions.

Note. Probably the first axiomatic system we all become familiar with is that

of Euclidean geometry. We think of (plane) Euclidean geometry in terms of the

points, lines, triangles, circles, etc. that we draw on sheets of paper. But purely

as a mathematical construct, many of these terms are left undefined! This is the

case for the term set in set theory; we can only give definitions of terms using

other terms, so at some point we must deal with undefined terms. The axioms of

geometry (that is, the statements about the objects of geometry which we take to

be true without proof) are what gives meaning to the objects. Then following the

laws of logic, we derive other statements (i.e., theorems) from the axioms. We may

turn to drawings on a sheet of paper to help us understand the axioms or the the-

orems, but strictly speaking the drawings are not lines or points. Lines and points

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-1-1.pdf
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-1-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf


1.1. Statements, Propositions, Theorems 4

are ideas and have no existence outside of the mind! However, we have accepted

our terms and axioms based on our expectation of creating a mathematical model

that mimics our experience with the “real world” of lines and points on a flat sheet

of paper. So, we could argue, that the axioms are motivated by our experience

(an argument that might sadden Kant)! However, we can carefully change the

axioms in a way that contradicts our experience and still, potentially, produce an

alternative axiomatic system (such as that given by the non-Euclidean geometry

of hyperbolic geometry). For more details on axiomatic systems, see my online

notes for Introduction to Modern Geometry (MATH 4157/5157) on Section 1.3.

Axiomatic Systems; for information on the consistency, independence, and com-

pleteness of axiomatic systems see Section 1.6. Completeness and Categoricalness

(this includes a brief discussion of the work of Kurt Gödel [April 28, 1906–January

14, 1978] on these topics).

Example 1.1. Consider a mathematical system in which a statement is a string

(sequence) of the symbols a, b, and S. For example, some statements are abaaS,

bSSaba, baaaab, and SSS. We start with one axiom: the statement S. The laws

of logic which we follow are the two rules: (1) a statement obtained from a true

statement be replacing an S with aSb is also true; (2) a statement obtained from

a true statement be deleting an S and closing up any resulting space is also true.

We get a “two column proof” (which you probably encountered in high school

geometry) that aaabbb is a theorem:

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-3.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-6.pdf


1.1. Statements, Propositions, Theorems 5

S Axiom

aSb Rule 1

aaSbb Rule 1

aaaSbbb Rule 1

aaabbb Rule 2

More generally, we could prove that aa · · · abb · · · b︸ ︷︷ ︸
n

is a theorem (by applying Rule

2, we can deduce this theorem for n = 1 and n = 2 using parts of the previous

proof).

Note. In a mathematical system, statement that has been shown to be true or

shown to be false is a proposition of the system and the label ‘true’ or ‘false’ is

the truth value of the proposition. Gerstein does not address additional possible

statuses of statements. One such status is that of meaninglessness. An example

of a meaningless statement is: “Love is blue.” This statement is neither true nor

false (it does not have a truth value). Kurt Gödel addressed this by dealing with

“well-formed formulas.” A meaningful statement that does not have a truth value

can could turn out to be true or false by finding a proof of the statement or its

negation. But it could also be undecidable; that is, it cannot be assigned a truth

value based on the collection of accepted axioms. It then would be possible to add

the statement as a new axiom (or to add its negation as a new axiom). An example

of an undecidable statement is the Continuum Hypothesis. This is related to the

existence of a set of real numbers that is larger then the set of natural numbers

and smaller than the set of real numbers (more precisely, this is related to the
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cardinalities of sets). It is not only unknown if such a set exists, it is unknowable

(within the standard axioms of the real numbers)! The Continuum Hypothesis

states that no such set exists. For more on this, see the above-mentioned notes on

Section 1.6. Completeness and Categoricalness and my more general online notes

for Great Ideas in Science (BIOL 3018) on Introduction to Math Philosophy and

Meaning.

Example 1.2(b). Consider the mathematical system of elementary arithmetic. A

prime number is an integer greater than 1 that cannot be expressed as a product of

two smaller positive integers. In practice, it can be difficult to determine whether

a given integer is prime. For example, numbers of the form Fn = 22n

+ 1 are

Fermat numbers. The 33rd Fermat number is F33 = 2233

= 28589934592 + 1. It has

2,585,827,973 decimal digits. The statement “F33 is prime” is a proposition since

it is either true or false, but neither this statement nor its negation is a theorem

because its truth value is currently unknown.

Note. The use of the terms “theorem” and “proposition” as given above are not

universal. It is common use the word theorem for a true statement that is of

major importance, and to call a theorem of relatively less importance a proposition

(though I have limited experience with this use of the term). A theorem of interest

primarily for its use in proving a more important theorem is often called a lemma.

A theorem that follows easily from a previous theorem is a corollary.
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