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1.4. Proofs: Structures and Strategies

Note. In this section we describe (sometimes informally) the approach to present-

ing a proof. The reason to prove a mathematical theorem, beyond establishing its

validity, is to gain a deeper understanding of the theorem. By giving a detailed log-

ical argument based on known results, we see why the theorem is true and how it

relates to previous results (in research, the “previous results” are often the existing

body of literature).

Note. Gerstein comments (see pages 18 and 19):

“But mathematics extends far beyond the uninspired linking of one

randomly chosen proposition to another. . . . In an interesting mathe-

matical system, the formal requirements of the laws of deduction are

likely to be so awesome in their complexity and rigidity that it is a com-

mon practice to adopt a less formal style of discussion, consisting of a

palatable mixture of mathematical expressions and ordinary sentences

in our natural language. We will follow that practice here. So what we

customarily call a proof is usually only an outline of the genuine article,

and we must be on guard for irrational leaps that cannot be justified

by the available body of axioms, theorems, and logical rules.”

Note/Definition. Suppose we want to prove a proposition Q. If we can find a

true proposition P such that P ⇒ Q, then this will do! Symbolically, we need to

prove P ∧ (P ⇒ Q) (where P is known to have truth value T). An argument of
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this sort is a direct proof. The logical principle employed here is called (mostly by

philosophers) the rule of modus ponens (or the law of detachment).

Note. The Greek philosopher Aristotle (384 bce-322 bce) introduced an approach

to logic, now known variously as Aristotelian logic, term logic, traditional logic, or

syllogistic logic. Aristotle published six works which make up the Organon: I.

Categories, II. On Interpretation, III. Prior Analytics, IV. Posterior Analytics,

V. Topics, and VI. On Sophistical Refutations (a copy of these works in English is

available at Archive.org). A basic idea behind Aristotelian logic is that propositions

are composed of two terms (thus the label “term logic”) and the reasoning process

draws a conclusion based on the two terms. A standard example is the line of

reasoning: “All men are mortal. Socrates is a man. Therefore Socrates is mortal.”

This is a syllogism where the first two sentences are “premises” and the third

sentence is the “conclusion.” Aristotelian logic was updated by the now more-

dominant predicate logic in the late 1800s.

A close up of Raphael’s“The School of Athens,” painted 1509-1511, of Plato and

Aristotle from Wikipedia (accessed 12/24/2021)

https://archive.org/details/AristotleOrganon/
https://en.wikipedia.org/wiki/Aristotle#/media/File:Sanzio_01_Plato_Aristotle.jpg
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Note. In Example 1.20, Gerstein dissects the argument that if a triangle has one

vertex at the center of a circle and the other two vertices on the circle, then the

triangle has two equal angles. He discusses the thought process (complete with

“Hmmm”) that one might go through to create the proof. We now give a similar

analysis of his Example 1.21 (which is related to number theory).

Example 1.21. Take the facts of elementary arithmetic as our body of “known

truths,” and consider a proof of this proposition: The square of an odd integer has

the form 8k+1 for some integer k. We first paraphrase Gerstein’s “rambling style”

of proof.

Proof. (Rambling Style). We start with an odd integer n. But we need a more

thorough quantitative description of n. Now an even integer is a multiple of 2; say

2q where q is some integer (with no conditions on q, other than the fact that it

an integer). An odd integer, then, is 1 greater than (or less than) an even integer.

Equivalently, when an odd integer is divided by 2, the remainder is 1. So we must

have n = 2q + 1 (say) for some integer q. Next, we can address the claim about

the square of n. We have (using the “known truths,” like FOIL)

n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4q(q + 1) + 1.

The factoring of 4q is inspired by the fact that we are trying to change n2 into an

expression of the form 8k+1, and this factoring produces the desired “+1.” Notice

that we have that n2 is a multiple of 4 plus 1, which is close to the desired conclusion

but is not yet the desired conclusion; we want a multiple of 8 plus 1, so we further

explore the term 4q(q + 1). You might view this as somewhat experimental (and
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it might fail!), but it is motivated. Now, either q or q + 1 is an even integer and

hence 2 either divides q or q +1. Therefore q(q +1)/2 is an integer (and, of course,

q(q + 1) = 2q(q + 1)/2), we can conclude

n2 = 4q(q + 1) + 1 = 4 (2q(q + 1)/2) + 1 = 8(q(q + 1)/2) + 1 = 8k + 1,

where we take k = q(q + 1)/2 (and, as argued above, k is an integer). We conclude

this argument with the standard contemporary symbol used to end a proof: �

A text book proof would be more concise and would not include the thought process

and the inspiration for various steps (though in a pedagogical environment it is wise

to motivate the steps taken, especially in complicated abstract settings). Homework

solutions in proof-based classes should follow a streamlined proof process as well.

So we take the ideas of the “Rambling Style” proof and clean things up as follows.

Proof. (Compact Style). An odd integer is of the form n = 2q +1 for some integer

q. Then

n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4q(q + 1) + 1 = 8(q(q + 1)/2) + 1 = 8k + 1,

where k = q(q + 1)/2 is an integer. �

With the introduction of the representation n = 2q+1 (established by the definition

of “even/odd integer”), both arguments above are based on the implication

(n = 2q + 1)︸ ︷︷ ︸
P

⇒ (n2 = 8k + 1)︸ ︷︷ ︸
Q

.

Now proposition P has truth value T by the definitions, the proofs establish the

implication P ⇒ Q, and modus ponens gives that the truth value of Q is then T.

Beyond this class (in fact, after we finish this section) you are very unlikely to hear

the use of modus ponens by name.
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Note. In an axiomatic system, we would desire that the truth value of every

(meaningful) proposition P could be determined within the system (such an ax-

iomatic system is complete). That is, we want to be able to prove either P or ∼ P .

However, it was shown by Kurt Gödel (April 28, 1906–January 14, 1978) that some

common axiomatic systems (he refers to them as “formal systems”) have undecid-

able propositions (that is, propositions which cannot be given a truth value in the

formal system). This is heavy stuff for this stage of the course, but for the record

Gödel proved:

Gödel’s First Incompleteness Theorem. There are provably unprovable but

nonetheless true propositions in any formal system that contains elementary

arithmetic, assuming that system to be consistent.

Gödel’s Second Incompleteness Theorem. The consistency of a formal sys-

tem that contains arithmetic cant be formally proved with that system.

These versions of Gödel’s theorems are from R. Goldstein’s Incompleteness: The

Proof and Paradox of Kurt Gödel, W. W. Norton, Great Discoveries Series (2005).

For more details on Gödel’s ideas, see my online notes on Introduction to Math

Philosophy and Meaning, and my online notes for Introduction to Modern Ge-

ometry (MATH 4157/5157) on Section 1.6. Completeness and Categoricalness. An

example of one “provably unprovable” result relates to the sizes (or “cardinalities”)

of sets. We’ll see in Section 4.3. Countable and Uncountable Sets that some infinite

sets are bigger than other infinite sets! In fact, the set of integers is an infinite set

that is strictly smaller than the infinite set of real numbers. That is, in symbols

that we will use later, |Z| < |R|. It is reasonable to ask if there is a set A that

is “bigger” than Z and “smaller” than R (in the sense of cardinality). In other

https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf
https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-6.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
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words, does a set A exist where |Z| < |A| < |R|? This is known to be neither true

nor false (though it is meaningful) within the standard axioms of set theory! The

denial of the existence of such a set A is called the Continuum Hypothesis. Of

course, we could just as easily hypothesize that such a set A does exist. For more

details on the Continuum Hypothesis, see my online presentation on Magical Math

Results. . . and Their Explanations (see the section on “Neither True Nor False”).

Note. On page 23, Gerstein gives a bit of a pep-talk about searching for a proof

(making an analogy with climbing a mountain’ give it a read!). We quote some of

his suggestions and his more symbolic statements:

“Now suppose you want to prove proposition Q, and you think you

know all that is needed for the job; say you know that a proposition

P is true. Think: If I know P , what else do I know as a consequence?

. . . Also, what does it mean to say that Q is true? Are there one or more

statements, perhaps simpler than Q, and perhaps separately provable,

from which Q will follow readily?”

Gerstein also defines “definition.” This seems a bit tongue-in-cheek, but here it

is. . .

Definition. A definition is a statement introducing a new symbol or word that

abbreviates a package of statements or expressions (or both) whose meanings or

uses are already understood.

https://faculty.etsu.edu/gardnerr/talks/Magical-Math.pptx
https://faculty.etsu.edu/gardnerr/talks/Magical-Math.pptx
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Note/Definition. If we can prove for proposition Q that the truth value of ∼ Q

is F, then we know that Q itself has truth value T. Such a proof of Q is an indirect

proof or proof by contradiction (or, as the philosophers say, “reductio ad absurdum”).

In such an argument, we show that ∼ Q implies a false statement, so that ∼ Q

cannot be true. The truth table associated with this is (Table 1.19):

P Q P ⇒ Q ∼ P ∼ Q ∼ Q ⇒∼ P Q ⇒ P

F F T T T T T

F T T T F T F

T F F F T F T

T T T F F T T

In the bottom line of the table, we have ∼ Q ⇒∼ P and ∼ p false, as desired for

a proof by contradiction. Notice that in this line of the table we have Q is true,

justifying the proof by contradiction. In addition, notice that the truth values

of P ⇒ Q and ∼ Q ⇒∼ P are the same so that these two propositions are

equivalent. Sentential form ∼ Q ⇒∼ P is the contrapositive or sentential form

P ⇒ Q. Sentential form Q ⇒ P is the converse of sentential form P ⇒ Q (and

these are not equivalent).

Note. We illustrate the use of the contrapositive to prove a claim by re-examining

Example 1.21.

Example 1.23. Let n denote an integer. Prove the implication

If n2 is even︸ ︷︷ ︸
P

then n is even︸ ︷︷ ︸
Q

.
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Proof. We prove the contrapositive. Suppose ∼ Q; that is, suppose n is not even.

In other words, suppose n is odd so that n is of the form n = 2k + 1. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1 = 2 (k(k + 1))︸ ︷︷ ︸
integer

+1.

So n2 is odd and ∼ P holds. That is, we have shown ∼ Q ⇒∼ P and so the

logically equivalent claim P ⇒ Q holds, as claimed. �

Exercise 1.4(a). Prove that the sum of two odd numbers is even.

Proof. Let m and n be two odd numbers. Then neither m nor n are even and

hence neither m for n are divisible by 2. So m = 2km +1 and n = 2kn +1 for some

integers km and kn. Then the sum is

m + n = (2km + 1) + (2kn + 1) = 2(km + kn) + 2 = 2(km + kn + 1),

where km+kn+1 is an integer. That is, 2 divides the sum m+n (namely, km+kn+1

times) and so the sum is even, as claimed. �
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