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1.6. Application: A Brief Introduction to

Switching Circuits

Note. In this section we use sentential forms to represent electronic switching

circuits. At a fundamental level, a computer is a complicated collection of switching

circuits.

Note. We consider a collection of wires connected to a collection of power sources.

By convention, the wires are represented by lines coming in from the left side of a

diagram. Power may or may not be flowing through a given wire connected to a

power source (that is, the power supply may be “on” or “off”). These wires (and

others further to the right) are linked together by switching devices called gates.

The gates have one or two wires entering from the left side and one wire exiting to

the right. Ultimately only one wire exits on the right. Whether power is off or on

in this one wire is determined by the inputs from the left (the on/off status of the

power sources on the left) and the configuration of the gates.

Figure from page 32
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Note. The two basic problems of this section are (1) to determine, based on the

on/off status of the power sources on the left, whether or not power flows out of the

single wire on the right side, and (2) to find a configuration of a minimal number of

gates that will result in the same output to the right (based on the input from the

left) as a given network of gates. We deal with these problems by relating them to

sentential forms and sentential variables. The wires on left become the variables

and on/off is associated with T/F. A truth table then allows us to solve problem

(1) and if we can find a logically equivalent form of the sentential form with the

fewest logical connectives then we solve problem (2).

Definition. We consider the basic gates and, or, and not which we symbolically

denote as follows (along with the associated sentential forms):

Figure from page 32

Example 1.36. A room light is to be connected to switches in two locations, and

a flick of either switch should change the state of the light (turns it off when on,

and vice versa). Design a circuit for this purpose, using and, or, and not gates.

Solution. Let P and Q denote the wires from the two wall switches (in terms of

actual wiring, we are trying to complete a circuit, so you might think of the wire

on the right side as connected to the other terminal of the common power source

to which the switches are attached). Let S be a sentential form that satisfies the
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desired description of the switches. Say we have both P and Q is the state F (off)

so that the light is off and S is F. By changing the truth value of either P once or

changing Q once (but not both) should then result in changing S to T. If we change

the truth value of both P and Q (which corresponds to flipping both switches) then

the truth value of S should remain F. This implies the following truth table:

P Q S

F F F

F T T

T F T

T T F

So S is T when P and Q have different truth values. This occurs when ∼ P ∧Q is T

(from line 2 of the truth table) or when P∧ ∼ Q is T (from line 3); otherwise S is F.

So we need either ∼ ∧Q or P∧ ∼ Q to be T. So we have S ≡ (∼ P∧Q)∨(P∧ ∼ Q).

To create a diagram of gates, we start with inputs P and Q on the left. To get

∼ P ∧Q, we first feed P into a not gate and then feed the output from this gate

(namely, ∼ P ) and Q into an and gate, producing the output of ∼ P ∧Q (in top

center of the diagram below). To get P∧ ∼ Q, we similarly feed Q into a not gate

and then feed the output from this gate (namely, ∼ Q) and P into an and gate,

producing the output of P∧ ∼ Q (in bottom center of the diagram below). Notice

that we need to split the lines from both P and Q to perform this type of “wiring.”

Finally, we feed the outputs ∼ P ∧Q and P∧ ∼ Q into an or gate; this output is

then connected to the light bulb.
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Figure from page 33

Note/Definition. By Note 1.6.A, we see that the logical connective xor can

be used to produce a sentential form logically equivalent to sentential form S in

Example 1.36: S = (∼ P ∧Q) ∨ (P∧ ∼ Q) ≡ P xor Q. We now denote exclusive

disjunction xor symbolically as ∨, so that we can say S = (∼ P ∧ Q) ∨ (P∧ ∼

Q) ≡ P∨Q. We also introduce this as a gate, the “exclusive or” gate:

Figure from page 33

With this available, we can simplify the solution to Example 1.36 to a single gate.

Example 1.37. A zoo has two special cages, each with its own power source, for

endangered species. An alarm will be installed in the zoo office that will clang if

either (or both) of the special cages are opened, assuming that the cage’s power

source and the alarm’s power source are on. Give a diagram of an appropriate

circuit, starting with the three power sources, that would allow the alarm to sound.
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Solution. Let A, C1, and C2 denote the power supplies for the alarm and the two

cages, respectively. For the alarm to sound, we need either A and C1 to be “on”

(that is, A ∧ C1 is T), or we need A and C2 to be “on” (that is, A ∧ C2 is T). So

we need (A ∧ C1) ∨ (A ∧ C2) to be T. We can produce A ∧ C1 using an and gate,

and we can produce A ∧ C2 using an and gate; since both require A as an input

we need to split the wire associated with A. To get (A ∧ C1) ∨ (A ∧ C2), we feed

the outputs of the two and gates into an or gate. This gives the following circuit

diagram.

Figure from page 34

By the Distributive Laws of Section 1.5. Logical Equivalence, we have that (A ∧

C1) ∨ (A ∧ C2) ≡ A ∧ (C1 ∨ C2). So we use a simpler circuit (illustrating problem

(2) above) using only one or gate (with C1 and C2) and one and gate (with A and

the output of the or gate) to get the circuit:

Figure from page 34 (with corrections)
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