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2.10. Mathematical Induction and Recursion

Note. In this section we give a technique that may be used to prove that a

statement of the form P (n) (where n is an integer greater than or equal to a

given integer n0) holds for all n ≥ n0. We give definitions and several examples.

You may have encountered this idea in Calculus 1 (MATH 1910) when dealing

with Riemann sums; you may recall the formula
∑n

i=1 i = n(n + 1)/2, which can

be demonstrated using this technique. For notes and examples in the Calculus 1

setting, see my online notes on Appendix A.2. Mathematical Induction and the

corresponding video Appendix A.2 Video.

Note. Let “P (n)” denote the statement “The integer n has property P .” Our goal

is to prove that P (n) is true for all integers n ≥ n0, where n0 is some given integer.

We use the technique of “mathematical induction” which allows us to prove an

infinite number of statements in a finite number of steps! In Example 2.64, Gerstein

gives some arguably artificial illustrations of the use of mathematical induction in

the “real world.”

Note 2.10.A. Here is an informal way to think about induction which is clear and

intuitive. Imagine an infinite line of dominos, where the dominos are labeled with

consecutive integers greater than or equal to integer n0, according to their position

in the line. We want to describe a way to knock down all of the dominos. We do

this by showing two things: (1) the first domino (the one labeled n0) falls, and (2)

when the domino labeled k falls, it knocks over the next domino in the line (the

https://faculty.etsu.edu/gardnerr/1910/Notes-14E/A2-14E.pdf
https://etsu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d72885be-cef9-4e82-a0d8-ac850049083a
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one labeled k + 1). A nice collection of illustrations of this idea is the following (in

which n0 = 1), from Coolmath.com (accessed 1/7/2022):

Note. Formally, the Principle of Mathematical Induction is based on a property

the natural numbers. The Well-Ordering Principle for N states: “Every nonempty

set of natural numbers has a least element.” This property can be proved in an

axiomatic development of the natural numbers. See my online notes for Introduc-

tion to Set Theory on Section 3.2. Properties of Natural Numbers (see Theorem

3.2.4). We state and prove the Principle of Mathematical Induction, based on the

Well-Ordering Principle.

Theorem 2.66. The Principle of Mathematical Induction.

Let n0 be an integer. Suppose P is a property such that

(a) P (n0) is true.

(b) For every integer k ≥ n0, the following conditional statement is true:

If P (n) is true for every n satisfying n0 ≤ n ≤ k, then P (k + 1) is true.

The P (n) is true for every integer n ≥ n0.

https://www.coolmath.com/algebra/19-sequences-series/09-mathematical-induction-02
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-3-2.pdf
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Note. The statement of Theorem 2.66 is somewhat different that the falling domi-

nos described in Note 2.10.A. Theorem 2.66 is sometimes called the “Strong Prin-

ciple of Induction.” This is contrast to the “Weak Principle of Induction” which

replaces the conditional statement of (b) with the conditional statement:

If P (n) is true for every n = k, then P (k + 1) is true.

Notice that the falling dominos story illustrates the Weak Principle. It can be

shown that these are actually equivalent; see Proof of the Equivalence of Strong

& Regular Induction on the Emory University Department of Mathematics and

Computer Science webpage (accessed 1/7/2022). Quite often we will only require

the Weak Principle.

Definition. In The Principle of Mathematical Induction, the act of verifying P (n0)

is the basis step of the induction proof, and verifying statement (b) is the induction

step. The hypothesis of the conditional statement in part (b) is the induction

hypothesis.

Example 2.67. We claim that for every n ∈ N,

1 + 2 + · · ·+ (n− 1) + n =
n(n + 1)

2
.

A plausible argument when n is even can be given by pairing the numbers 1, 2, . . . , n−

1, n as:

1 + 2 + · · ·+ n/2 + (n/2 + 1) + · · ·+ (n− 1) + n

= (1 + n) + (2 + (n− 1)) + (3 + (n− 2)) + · · ·+ (n/2 + (n/2 + 1))

http://mathcenter.oxford.emory.edu/site/math125/strongInductionEquivalence/
http://mathcenter.oxford.emory.edu/site/math125/strongInductionEquivalence/
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= (n/2)(n + 1) = n(n + 1)/2.

When n is odd, a similar argument can be given, but there is a “center” term of

(n + 1)/2 and the pairing procedure has to be modified. Geometrically, consider

the following figure (from page 100 of the text book):

Notice that the area of the n× (n + 1) rectangle is twice the are in white, which is

1+2+ · · ·+n. That is, 2(1+2+ · · ·+n) = n(n+1), or 1+2+ · · ·+n = n(n+1)/2.

These are nice motivational arguments, but they are not proofs. We can use the

(Weak) Principle of Mathematical Induction to give a formal proof.

Note. We made a claim about the size of the power set of a finite set in Section

2.7. The Power Set. We now have the equipment to prove the claim.

Theorem 2.69. If S is a set with n elements then the power set P (S) has 2n

elements.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-7.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-7.pdf


2.10. Mathematical Induction and Recursion 5

Example 2.70. The example is a preview of the topic of congruence that we will

encounter in Section 6.4. Congruence; Divisibility Tests. We claim that for every

integer n ≥ 0, the number 42n+1 + 3n+2 is a multiple of 13. (Recall that integer x

is a multiple of an integer y if x = yt for some integer t.) We prove the claim using

induction.

Note. Recall that a prime number is an integer p > 1 that has no integer factor-

ization p = ab in which both a > 1 and b > 1. The next theorem is a result from

number theory which we can prove using the (Strong) Principle of Mathematical

Induction.

Theorem 2.71. Every integer n ≥ 2 is a product of primes numbers.

Note. Gerstein describes recursion as “an induction-like format for certain math-

ematical definitions.” An example of a recursive definition of the sequence sn =

1 + 2 + 3 + · · ·+ (n− 1) + n is:

s1 = 1

sk+1 = (k + 1) + sk.

The recursion is the fact that the “new term” sk+1 is defined as a function of the

previous terms. The condition s1 = 1 is the “initial condition.” Another example

of a recursively defined sequence is the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . .

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-4.pdf
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where each new term is the sum of the previous two terms.

s0 = 0, s1 = 1

sk+1 = sk−1 + sk.

Notice that it is trickier to determine the nth term, sn, in this sequence than it is in

the example above. You may have seen the Fibonacci sequence in Linear Algebra

(MATH 2010), in the setting of eigenvalues and diagonalizing a matrix. See my

online Linear Algebra notes on Section 5.3. Two Applications. In the linear algebra

setting, we can define the initial condition as the vector

 s1

s0

 =

 1

0

 and then

we consider the matrix equation sk+1

sk

 =

 1 0

1 0

 1

0

 = Ak~x.

By diagonalizing matrix A we can find a (surprising) formula for the nth term of

the Fibonacci sequence: sk =
1√
5

(1 +
√

5

2

)k

−

(
1−

√
5

2

)
k

 . If this section

we consider recursively defined sequences for which we can justify a formula for the

nth term using induction.

Note. You are familiar with the summation symbol
∑

from Riemann sums in

Calculus 1 (see my online notes for Calculus 1 [MATH 1910] on Section 5.2. Sigma

Notation and Limits of Finite Sums):
n∑

i=1

ai = a1 + a2 + · · ·+ an−1 + an. Similarly,

there is the product symbol
∏

which represents the product of an indexed collection

of numbers:
n∏

i=1

ai = a1 × a2 × · · · × an−1 × an. We can use the product symbol to

https://faculty.etsu.edu/gardnerr/2010/c5s3.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
https://faculty.etsu.edu/gardnerr/1910/Notes-14E/c5s2-14E.pdf
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define the factorial symbol: n! =
n∏

i=1

i = 1×2×· · ·×(n−1)×n. We can recursively

define these symbols. The summation symbol is defined by

1∑
i=1

a1 = a1

k+1∑
i=1

ai =

(
k∑

i=1

ai

)
+ ak+1,

the product symbol is defined by

1∏
i=1

a1 = a1

k+1∏
i=1

ai =

(
k∏

i=1

ai

)
× ak+1,

and the factorial symbol is defined by

0! = 1

(k + 1)! = k!(k + 1).
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