2.9. Set Decomposition: Partitions and Relations

Note. In this section we introduce an idea fundamental to mathematics, that of an equivalence relation. Equivalence relations play a big role in number theory and modern algebra, in particular. We will show that an equivalence relation on a set determines a partition and, conversely, a partition of a set determines an equivalence relation.

Definition 2.47. Let S be a nonempty set. A partition Π of S is a family $\Pi=\left\{A_{i}\right\}_{i \in I}$ of nonempty subsets of S satisfying these conditions:
(1) $\cup_{i \in I} A_{i}=S$.
(2) $A_{i} \cap A_{j}=\varnothing$ if $i \neq j$.

The A_{i} are blocks of the partition.

Example 2.48. (a) Consider set $S=\{1,2,3,4\}$. There is one partition of S with 1 block: $\{\{1,2,3,4\}\}$. There are seven partitions of S with 2 blocks:

$$
\begin{array}{lll}
\{\{1\},\{2,3,4\}\} & \{\{2\},\{1,3,4\}\} & \{\{3\},\{1,2,4\}\} \\
\{\{4\},\{1,2,3\}\} & \{\{1,2\},\{3,4\}\} & \\
\{\{1,3\},\{2,4\}\} & \{\{1,4\},\{2,3\}\} &
\end{array}
$$

There are six partitions of S with 3 blocks:

$$
\begin{array}{lll}
\{\{1\},\{2\},\{3,4\}\} & \{\{1\},\{3\},\{2,4\}\} & \{\{1\},\{4\},\{2,3\}\} \\
\{\{2\},\{3\},\{1,4\}\} & \{\{2\},\{4\},\{1,3\}\} & \{\{3\},\{4\},\{1,2\}\}
\end{array}
$$

There is one partition of S with 4 blocks: $\{\{1\},\{2\},\{3\},\{4\}\}$.
(d) In the Cartesian plane E (where we have associated points and the ordered pair of real numbers representing them), the family $\left\{L_{i}\right\}_{i \in \mathbb{R}}$ (where L_{i} represents the vertical line in E of the form $y=i$) is a partition of E. The family $\left\{C_{r}\right\}_{r \geq 0}$ of circles with center $(0,0)$ and radius r (see Example 2.29(b)) is also a partition of E. We also considered closed disks D_{r} of radius $r \geq 0$ and center $(0,0),\left\{D_{r}\right\}_{r \geq 0}$, but the intersection of any two such disks is nonempty and so $\left\{D_{r}\right\}_{r \geq 0}$ does not partition E.

Example 2.49. (a) We will often construct partitions of a set which involve blocks that contain elements with a "common feature." An example foreshadowing this approach involves the integers. The oddness or evenness of an integer is its parity. The relation of "having the same parity" leads to a partition of \mathbb{Z} into two blocks, the set of even integers and the set of odd integers. We now formally define a relation.

Definition 2.50. A relation R on a set S is a collection of ordered pairs of elements of S; that is, a subset $R \subseteq S \times S$. The assertion $(x, y) \in R$ is denoted $x R y$ and we say " x is related to y by R. If $(x, y) \notin R$ we write $x R y$. If $R=S \times S$ then R is the universal relation on S. If $R=\varnothing$ then R is the empty relation.

Example 2.51. (d) Let L be the set of all living people. Define relations P and C as:

$$
\begin{aligned}
P & =\{(x, y \mid x \text { is a parent of } y\} \\
C & =\{(y, y \mid y \text { is a child of } x\}
\end{aligned}
$$

We then have $x P y \Leftrightarrow y C x$. We say that P and C are inverse relations, denoted $P=C^{-1}$ and $C=P^{-1}$.

Definition 2.52. Let R be a relation on the set S. Then R is reflexive if $x R x$ for all $x \in S$. The relation R is symmetric if for all $x, y \in S$ we have $x R y \Rightarrow y R x$. Relation R is transitive if for all $x, y, z \in S$, we have $(x R y$ and $y R z) \Rightarrow x R z$.

Example 2.53. (b) Let $S=\{$ rock, scissors, paper $\}$. Define a relation B (read "beats") on S by

$$
B=\{(\text { rock }, \text { scissors }),(\text { scissors, paper }),(\text { paper, rock })\} .
$$

Notice that relation B is neither reflexive, symmetric, nor transitive.
(c) Let $S=\{1,2,3\}$ and consider the relations on S of:

$$
\begin{aligned}
& R_{1}=\{(1,1),(2,2),(3,3),(1,2),(2,3)\} \\
& R_{2}=\{(1,2),(2,3),(1,3)\} \\
& R_{3}=\{(1,2),(2,1)\}
\end{aligned}
$$

The R_{1} is reflexive, but not symmetric (since $1 R_{1} 2$ and $2 \not R_{1} 1$), and not transitive (since $1 R_{1} 2$ and $2 R_{1} 3$ but $1 x R_{1} 3$). Relation R_{2} is transitive by neither reflexive
$\left(1 \not R_{2} 1\right)$ nor symmetric $1 R_{2} 2$ but $\left.2 \not R_{2} 1\right)$. To establish transitivity of R_{2}, we need to verify that $x, y, z \in S$ that the implication $\left(x R_{2} y\right.$ and $\left.y R_{2} z\right) \Rightarrow x R_{2} z$ holds. The only values for which ($x R_{2} y$ and $y R_{2} z$) hold are $x=1, y=2$, and $z=3$, and we do have $x R_{2} z$ or $1 R_{2} 3$. Relation R_{3} is symmetric but not reflexive since $1 \not R_{3} 1$ and not transitive because $a R_{3} 2$ and $2 R_{3} 1$ but $1 / R_{3} 1$.

Example. In Example 2.51(c), the relation " $<$ " denotes the usual less-than relation on the set \mathbb{R} of real numbers. Formally, we have $(a, b) \in<$ for $a, b \in \mathbb{R}$ if $a<b$. Notice that < is neither reflexive nor symmetric, but it is transitive. If we take the relation " \leq " ("less-than-or-equal-to") on \mathbb{R} then we have a reflexive, symmetric, and transitive relation on \mathbb{R}.

Definition 2.55. A relation is an equivalence relation if it is reflexive, symmetric, and transitive. If \sim is an equivalence relation and $x \sim y$ then we say x and y are equivalent with respect to \sim.

Example 2.56. (b) Consider set $S=\{1,2,3,4\}$ with relation

$$
R=\{(1,2),(2,1),(1,1),(2,2),(3,3),(4,4)\} .
$$

Then R is reflexive, symmetric, and transitive; that is, R is an equivalence relation on S. Also, \leq is an equivalence relation on \mathbb{R} (probably the equivalence relation that you are most familiar with; of course, \geq is also an equivalence relation on \mathbb{R}).

Definition 2.57. If \sim is an equivalence relation on a set S, the set of all elements of S that are related (with respect to \sim) to a given element x constitute the equivalence class of x, denoted $[x]$. Symbolically, $[x]=\{s \in S \mid s \sim x\}$.

Note. The properties of an equivalence relation on a set S allow us to prove that the equivalence classes partition S. This is accomplished in the next two results.

Lemma 2.58. If \sim is an equivalence relation and $[x] \neq[y]$ then $[x] \cap[y]=\varnothing$.

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim. Then Π is a partition of S. This partition Π is called the partition induced by \sim.

Note/Definition. Consider a finite set S with an equivalence relation \sim. We can draw a picture of the equivalence relation by using a point (or vertex) to represent each member of S, and connect two vertices with a line segment or an arc (called an edge) if the corresponding members of S are related by \sim. (By convention, we do not draw an arc from each vertex to itself, even though this would be implies by the reflexive property of \sim.) The resulting collection of vertices and edges is a graph of the equivalence relation \sim. Notice that this idea overlaps with the idea of a "decision tree" (also an example of a graph) which we introduced in Section 2.7. The Power Set.

Example 2.60. Consider the set $S=\{1,2,3,4,5,6\}$ with the equivalence relation

$$
\begin{aligned}
\sim & =\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,5), \\
& (5,1),(2,4),(4,2),(2,6),(6,2),(4,6),(6,4)\} .
\end{aligned}
$$

The graph os this equivalence relation is (from Gerstein, page 92):

Each "cluster" of connected vertices (these are called the connected components of the graph) represents an equivalence class, so the associated partition Π of S into equivalence classes is $\Pi=\{\{1,5\},\{3\},\{2,4,6\}\}$.

Note. In fact, the converse of Theorem 2.59 also holds. That is, any partition Π of a set S determines an equivalence relation on set S. Therefore there is a correspondence between the partitions of a set and the equivalence relations on the set. In addition, the blocks of the partition correspond to the equivalence classes of the equivalence relation.

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π. Then \sim is an equivalence relation on S. This is called the equivalence relation induced by partition Π.

Example 2.63. (a) In Example 2.49 above we partition \mathbb{Z} using the parity of each integer: $\mathbb{Z}=A \cup B$ where A is the set of even integers and B is the set of odd integers. The equivalence relation \sim induced by this partition is called "congruence modulo 2." This idea, and more general related ones, are explored in Section 6.4. Congruence; Divisibility Tests.

