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2.9. Set Decomposition: Partitions and Relations

Note. In this section we introduce an idea fundamental to mathematics, that of

an equivalence relation. Equivalence relations play a big role in number theory

and modern algebra, in particular. We will show that an equivalence relation on

a set determines a partition and, conversely, a partition of a set determines an

equivalence relation.

Definition 2.47. Let S be a nonempty set. A partition Π of S is a family

Π = {Ai}i∈I of nonempty subsets of S satisfying these conditions:

(1) ∪i∈IAi = S.

(2) Ai ∩ Aj = ∅ if i 6= j.

The Ai are blocks of the partition.

Example 2.48. (a) Consider set S = {1, 2, 3, 4}. There is one partition of S with

1 block: {{1, 2, 3, 4}}. There are seven partitions of S with 2 blocks:

{{1}, {2, 3, 4}} {{2}, {1, 3, 4}} {{3}, {1, 2, 4}}

{{4}, {1, 2, 3}} {{1, 2}, {3, 4}}

{{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

There are six partitions of S with 3 blocks:

{{1}, {2}, {3, 4}} {{1}, {3}, {2, 4}} {{1}, {4}, {2, 3}}

{{2}, {3}, {1, 4}} {{2}, {4}, {1, 3}} {{3}, {4}, {1, 2}}

There is one partition of S with 4 blocks: {{1}, {2}, {3}, {4}}.
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(d) In the Cartesian plane E (where we have associated points and the ordered

pair of real numbers representing them), the family {Li}i∈R (where Li represents

the vertical line in E of the form y = i) is a partition of E. The family {Cr}r≥0 of

circles with center (0, 0) and radius r (see Example 2.29(b)) is also a partition of

E. We also considered closed disks Dr of radius r ≥ 0 and center (0, 0), {Dr}r≥0,

but the intersection of any two such disks is nonempty and so {Dr}r≥0 does not

partition E.

Example 2.49. (a) We will often construct partitions of a set which involve blocks

that contain elements with a “common feature.” An example foreshadowing this

approach involves the integers. The oddness or evenness of an integer is its parity.

The relation of “having the same parity” leads to a partition of Z into two blocks,

the set of even integers and the set of odd integers. We now formally define a

relation.

Definition 2.50. A relation R on a set S is a collection of ordered pairs of elements

of S; that is, a subset R ⊆ S × S. The assertion (x, y) ∈ R is denoted xRy and we

say “x is related to y by R. If (x, y) 6∈ R we write x 6Ry. If R = S×S then R is the

universal relation on S. If R = ∅ then R is the empty relation.
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Example 2.51. (d) Let L be the set of all living people. Define relations P and

C as:

P = {(x, y | x is a parent of y}

C = {(y, y | y is a child of x}.

We then have xPy ⇔ yCx. We say that P and C are inverse relations, denoted

P = C−1 and C = P−1.

Definition 2.52. Let R be a relation on the set S. Then R is reflexive if xRx for

all x ∈ S. The relation R is symmetric if for all x, y ∈ S we have xRy ⇒ yRx.

Relation R is transitive if for all x, y, z ∈ S, we have (xRy and yRz) ⇒ xRz.

Example 2.53. (b) Let S = {rock, scissors, paper}. Define a relation B (read

“beats”) on S by

B = {(rock, scissors), (scissors, paper), (paper, rock)}.

Notice that relation B is neither reflexive, symmetric, nor transitive.

(c) Let S = {1, 2, 3} and consider the relations on S of:

R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)}

R2 = {(1, 2), (2, 3), (1, 3)}

R3 = {(1, 2), (2, 1)}

The R1 is reflexive, but not symmetric (since 1R12 and 26R11), and not transitive

(since 1R12 and 2R13 but 1x 6R13). Relation R2 is transitive by neither reflexive
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(16R21) nor symmetric 1R22 but 26R21). To establish transitivity of R2, we need to

verify that x, y, z ∈ S that the implication (xR2y and yR2z) ⇒ xR2z holds. The

only values for which (xR2y and yR2z) hold are x = 1, y = 2, and z = 3, and we

do have xR2z or 1R23. Relation R3 is symmetric but not reflexive since 16R31 and

not transitive because aR32 and 2R31 but 16R31.

Example. In Example 2.51(c), the relation “<” denotes the usual less-than rela-

tion on the set R of real numbers. Formally, we have (a, b) ∈< for a, b ∈ R if a < b.

Notice that < is neither reflexive nor symmetric, but it is transitive. If we take the

relation “≤” (“less-than-or-equal-to”) on R then we have a reflexive, symmetric,

and transitive relation on R.

Definition 2.55. A relation is an equivalence relation if it is reflexive, symmetric,

and transitive. If ∼ is an equivalence relation and x ∼ y then we say x and y are

equivalent with respect to ∼.

Example 2.56. (b) Consider set S = {1, 2, 3, 4} with relation

R = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (4, 4)}.

Then R is reflexive, symmetric, and transitive; that is, R is an equivalence relation

on S. Also, ≤ is an equivalence relation on R (probably the equivalence relation

that you are most familiar with; of course, ≥ is also an equivalence relation on R).
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Definition 2.57. If ∼ is an equivalence relation on a set S, the set of all elements

of S that are related (with respect to ∼) to a given element x constitute the

equivalence class of x, denoted [x]. Symbolically, [x] = {s ∈ S | s ∼ x}.

Note. The properties of an equivalence relation on a set S allow us to prove that

the equivalence classes partition S. This is accomplished in the next two results.

Lemma 2.58. If ∼ is an equivalence relation and [x] 6= [y] then [x] ∩ [y] = ∅.

Theorem 2.59. Let ∼ be an equivalence relation on a nonempty set S, and let Π

be the family of equivalence classes determined by ∼. Then Π is a partition of S.

This partition Π is called the partition induced by ∼.

Note/Definition. Consider a finite set S with an equivalence relation ∼. We can

draw a picture of the equivalence relation by using a point (or vertex) to represent

each member of S, and connect two vertices with a line segment or an arc (called

an edge) if the corresponding members of S are related by ∼. (By convention, we

do not draw an arc from each vertex to itself, even though this would be implies

by the reflexive property of ∼.) The resulting collection of vertices and edges is a

graph of the equivalence relation ∼. Notice that this idea overlaps with the idea of

a “decision tree” (also an example of a graph) which we introduced in Section 2.7.

The Power Set.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-4.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-4.pdf
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Example 2.60. Consider the set S = {1, 2, 3, 4, 5, 6} with the equivalence relation

∼ = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 5),

(5, 1), (2, 4), (4, 2), (2, 6), (6, 2), (4, 6), (6, 4)}.

The graph os this equivalence relation is (from Gerstein, page 92):

Each “cluster” of connected vertices (these are called the connected components of

the graph) represents an equivalence class, so the associated partition Π of S into

equivalence classes is Π = {{1, 5}, {3}, {2, 4, 6}}.

Note. In fact, the converse of Theorem 2.59 also holds. That is, any partition

Π of a set S determines an equivalence relation on set S. Therefore there is a

correspondence between the partitions of a set and the equivalence relations on the

set. In addition, the blocks of the partition correspond to the equivalence classes

of the equivalence relation.

Theorem 2.62. Let Π be a partition of the set S. For x, y ∈ S, define x ∼ y

to mean that x and y belong to the same block of the partition Π. Then ∼ is

an equivalence relation on S. This is called the equivalence relation induced by

partition Π.
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Example 2.63. (a) In Example 2.49 above we partition Z using the parity of each

integer: Z = A ∪ B where A is the set of even integers and B is the set of odd

integers. The equivalence relation ∼ induced by this partition is called “congruence

modulo 2.” This idea, and more general related ones, are explored in Section 6.4.

Congruence; Divisibility Tests.
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