2.9. Set Decomposition: Partitions and Relations

Note. In this section we introduce an idea fundamental to mathematics, that of an equivalence relation. Equivalence relations play a big role in number theory and modern algebra, in particular. We will show that an equivalence relation on a set determines a partition and, conversely, a partition of a set determines an equivalence relation.

Definition 2.47. Let S be a nonempty set. A partition Π of S is a family $\Pi = \{A_i\}_{i \in I}$ of nonempty subsets of S satisfying these conditions:

- (1) $\cup_{i\in I}A_i = S.$
- (2) $A_i \cap A_j = \emptyset$ if $i \neq j$.

The A_i are *blocks* of the partition.

Example 2.48. (a) Consider set $S = \{1, 2, 3, 4\}$. There is one partition of S with 1 block: $\{\{1, 2, 3, 4\}\}$. There are seven partitions of S with 2 blocks:

$\{\{1\}, \{2, 3, 4\}\}$	$\{\{2\}, \{1, 3, 4\}\}$	$\{\{3\},\{1,2,4\}\}$
$\{\{4\},\{1,2,3\}\}$	$\{\{1,2\},\{3,4\}\}$	
$\{\{1,3\},\{2,4\}\}$	$\{\{1,4\},\{2,3\}\}$	

There are six partitions of S with 3 blocks:

$\{\{1\},\{2\},\{3,4\}\}$	$\{\{1\},\{3\},\{2,4\}\}$	$\{\{1\},\{4\},\{2,3\}\}$
$\{\{2\},\{3\},\{1,4\}\}$	$\{\{2\},\{4\},\{1,3\}\}$	$\{\{3\},\{4\},\{1,2\}\}$

There is one partition of S with 4 blocks: $\{\{1\}, \{2\}, \{3\}, \{4\}\}$.

(d) In the Cartesian plane E (where we have associated points and the ordered pair of real numbers representing them), the family $\{L_i\}_{i\in\mathbb{R}}$ (where L_i represents the vertical line in E of the form y = i) is a partition of E. The family $\{C_r\}_{r\geq 0}$ of circles with center (0,0) and radius r (see Example 2.29(b)) is also a partition of E. We also considered closed disks D_r of radius $r \geq 0$ and center (0,0), $\{D_r\}_{r\geq 0}$, but the intersection of any two such disks is nonempty and so $\{D_r\}_{r\geq 0}$ does not partition E.

Example 2.49. (a) We will often construct partitions of a set which involve blocks that contain elements with a "common feature." An example foreshadowing this approach involves the integers. The oddness or evenness of an integer is its *parity*. The relation of "having the same parity" leads to a partition of \mathbb{Z} into two blocks, the set of even integers and the set of odd integers. We now formally define a relation.

Definition 2.50. A relation R on a set S is a collection of ordered pairs of elements of S; that is, a subset $R \subseteq S \times S$. The assertion $(x, y) \in R$ is denoted xRy and we say "x is related to y by R. If $(x, y) \notin R$ we write $x \not R y$. If $R = S \times S$ then R is the universal relation on S. If $R = \emptyset$ then R is the empty relation. **Example 2.51.** (d) Let L be the set of all living people. Define relations P and C as:

$$P = \{(x, y \mid x \text{ is a parent of } y\}$$
$$C = \{(y, y \mid y \text{ is a child of } x\}.$$

We then have $xPy \Leftrightarrow yCx$. We say that P and C are *inverse relations*, denoted $P = C^{-1}$ and $C = P^{-1}$.

Definition 2.52. Let R be a relation on the set S. Then R is *reflexive* if xRx for all $x \in S$. The relation R is *symmetric* if for all $x, y \in S$ we have $xRy \Rightarrow yRx$. Relation R is *transitive* if for all $x, y, z \in S$, we have $(xRy \text{ and } yRz) \Rightarrow xRz$.

Example 2.53. (b) Let $S = {\text{rock, scissors, paper}}$. Define a relation B (read "beats") on S by

 $B = \{(\text{rock}, \text{scissors}), (\text{scissors}, \text{paper}), (\text{paper}, \text{rock})\}.$

Notice that relation B is neither reflexive, symmetric, nor transitive. (c) Let $S = \{1, 2, 3\}$ and consider the relations on S of:

$$R_{1} = \{(1,1), (2,2), (3,3), (1,2), (2,3)\}$$
$$R_{2} = \{(1,2), (2,3), (1,3)\}$$
$$R_{3} = \{(1,2), (2,1)\}$$

The R_1 is reflexive, but not symmetric (since $1R_12$ and $2\not R_11$), and not transitive (since $1R_12$ and $2R_13$ but $1x\not R_13$). Relation R_2 is transitive by neither reflexive

 $(1 \not R_2 1)$ nor symmetric $1R_2 2$ but $2\not R_2 1$). To establish transitivity of R_2 , we need to verify that $x, y, z \in S$ that the implication $(xR_2y \text{ and } yR_2z) \Rightarrow xR_2z$ holds. The only values for which $(xR_2y \text{ and } yR_2z)$ hold are x = 1, y = 2, and z = 3, and we do have xR_2z or $1R_23$. Relation R_3 is symmetric but not reflexive since $1\not R_31$ and not transitive because aR_32 and $2R_31$ but $1\not R_31$.

Example. In Example 2.51(c), the relation "<" denotes the usual less-than relation on the set \mathbb{R} of real numbers. Formally, we have $(a, b) \in <$ for $a, b \in \mathbb{R}$ if a < b. Notice that < is neither reflexive nor symmetric, but it is transitive. If we take the relation " \leq " ("less-than-or-equal-to") on \mathbb{R} then we have a reflexive, symmetric, and transitive relation on \mathbb{R} .

Definition 2.55. A relation is an *equivalence relation* if it is reflexive, symmetric, and transitive. If \sim is an equivalence relation and $x \sim y$ then we say x and y are *equivalent* with respect to \sim .

Example 2.56. (b) Consider set $S = \{1, 2, 3, 4\}$ with relation

$$R = \{(1,2), (2,1), (1,1), (2,2), (3,3), (4,4)\}.$$

Then R is reflexive, symmetric, and transitive; that is, R is an equivalence relation on S. Also, \leq is an equivalence relation on \mathbb{R} (probably the equivalence relation that you are most familiar with; of course, \geq is also an equivalence relation on \mathbb{R}). **Definition 2.57.** If \sim is an equivalence relation on a set S, the set of all elements of S that are related (with respect to \sim) to a given element x constitute the equivalence class of x, denoted [x]. Symbolically, $[x] = \{s \in S \mid s \sim x\}$.

Note. The properties of an equivalence relation on a set S allow us to prove that the equivalence classes partition S. This is accomplished in the next two results.

Lemma 2.58. If ~ is an equivalence relation and $[x] \neq [y]$ then $[x] \cap [y] = \emptyset$.

Theorem 2.59. Let \sim be an equivalence relation on a nonempty set S, and let Π be the family of equivalence classes determined by \sim . Then Π is a partition of S. This partition Π is called the partition *induced* by \sim .

Note/Definition. Consider a finite set S with an equivalence relation \sim . We can draw a picture of the equivalence relation by using a point (or *vertex*) to represent each member of S, and connect two vertices with a line segment or an arc (called an *edge*) if the corresponding members of S are related by \sim . (By convention, we do not draw an arc from each vertex to itself, even though this would be implies by the reflexive property of \sim .) The resulting collection of vertices and edges is a *graph* of the equivalence relation \sim . Notice that this idea overlaps with the idea of a "decision tree" (also an example of a graph) which we introduced in Section 2.7. The Power Set.

Example 2.60. Consider the set $S = \{1, 2, 3, 4, 5, 6\}$ with the equivalence relation

$$\sim = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,5), (5,1), (2,4), (4,2), (2,6), (6,2), (4,6), (6,4)\}.$$

The graph os this equivalence relation is (from Gerstein, page 92):

Each "cluster" of connected vertices (these are called the *connected components* of the graph) represents an equivalence class, so the associated partition Π of S into equivalence classes is $\Pi = \{\{1, 5\}, \{3\}, \{2, 4, 6\}\}.$

Note. In fact, the converse of Theorem 2.59 also holds. That is, any partition Π of a set S determines an equivalence relation on set S. Therefore there is a correspondence between the partitions of a set and the equivalence relations on the set. In addition, the blocks of the partition correspond to the equivalence classes of the equivalence relation.

Theorem 2.62. Let Π be a partition of the set S. For $x, y \in S$, define $x \sim y$ to mean that x and y belong to the same block of the partition Π . Then \sim is an equivalence relation on S. This is called the equivalence relation *induced* by partition Π .

Example 2.63. (a) In Example 2.49 above we partition \mathbb{Z} using the parity of each integer: $\mathbb{Z} = A \cup B$ where A is the set of even integers and B is the set of odd integers. The equivalence relation ~ induced by this partition is called "congruence modulo 2." This idea, and more general related ones, are explored in Section 6.4. Congruence; Divisibility Tests.

Revised: 2/23/2024