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3.2. Surjections, Injections, Bijections, Sequences

Note. In this section, we define the terms in the title of the section and give

examples. We discuss the “marriage problem” in the context of the existence of

an injection. We recursively demonstrate a bijection between N and N × N (see

Example 3.18).

Definition. Consider function f where f : A → B. The subset of B consisting of

all those elements of B that are images of elements of A is the range or image of

f , denoted f(A) or im(f). Symbolically,

f(A) = im(f) = {f(a) | a ∈ A}.

Note 3.2.A. Since we have define a function as a set of ordered pairs, we have

im(f) = {b ∈ B | (a, b) ∈ f for some a ∈ A} = {b ∈ B | f(a) = b for some a ∈ A}.

If S ⊆ A where A is the domain of f , then we write f(S) = {f(x) | x ∈ S}.

Graphically, we have (see page 118):
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Definition. Consider function f : A → B. Function f is surjective or onto if

f(A) = B, in which case f is a surjection. In terms of elements, this is equivalent

to the condition that for all b ∈ B there exists an element a ∈ A such that f(a) = b.

Example 3.9. (a) The function f : R → R defined as f(x) = x2 is not surjective

(onto) because for every y < 0 there is no x ∈ R such that f(x) = x2 = y < 0

(though we need to only find one such y to show that f is not surjective).

(b) The function g : R → R defined by g(x) = x + 1 is surjective, because for

any y ∈ R we have for x = y − 1 ∈ R that g(x) = g(y − 1) = (y − 1) + 1 = y, as

needed to show surjective.

(d) We discussed indexed sets in Section 2.6. Indexed Sets. If S and I are sets

and f : I → S is a surjective function, then we can index set S using set I and

function f . The index i ∈ I associated with s ∈ S is the i such that f(i) = s, in

which case we denote s as si.

Definition 3.10. A function f : A → B is said to be one-to-one or injective if the

following implication is true for every a1, a2 ∈ A: f(a1) = f(a2) ⇒ a1 = a2.

Note 3.2.B. In showing that a function is injective, it is sometimes convenient

to consider the contrapositive of Definition 3.10: for all a1, a2 ∈ A, a1 6= a2 ⇒

f(a1) 6= f(a2). That is, different elements in the domain have different images.

Example 3.11(a). The function f : R → R given by f(x) = x3 is injective.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-6.pdf
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Note. We now describe a classical problem which we use to motivate some of

the topics we will soon encounter. We follow the traditional (and non-progressive)

version of the “marriage problem.” Let set X = {x1, x2, . . . , xn} and Y be sets

of unmarried women and men, respectively. Suppose that each woman xi deter-

mines the set Mi ⊆ Y of all men that she considers acceptable for marriage. The

marriage problem is: Is every woman able to marry an acceptable man (with the

condition that only one woman can marry any particular man)? We model this

with an injective function and an indexing set. Let I = {1, 2, . . . , n} and suppose

we are given a family {Mi}i∈I of nonempty sets. We look for an injective function

f : I → ∪i∈IMi such that f(i) ∈ Mi for i ∈ I. The one-to-oneness of the function

function models the fact that two different women cannot marry the same man.

The condition f(i) ∈ Mi guarantees that each woman marries a man acceptable to

her. The set {f(1), f(2), . . . , f(n)} is a system of distinct representatives for the

family of sets {Mi}i∈I . If we consider the first k women, where 1 ≤ k ≤ n, then

there must be at least k men available in their sets of “acceptable men,” ∪k
i=1Mi.

Quantitatively, this is expressed as: #
(
∪k

i=1Mi

)
≤ k for all 1 ≤ k ≤ n (where, for

finite set S, #S denotes the number of elements in set S; this is explored more

in Section 4.1. Cardinality; Fundamental Counting Principles). Though not at all

obvious, it turns out that this condition is sufficient for the existence of the desired

function f . This was proved by Philip Hall in “On Representatives of Subsets,”

Journal of the London Mathematical Society, 10(1), 26-30 (1935). The first page

of this paper can be viewed on the Journal of the London Mathematical Society

webpage (accessed 1/31/2022). For this reason, this result is called “Hall’s Mar-

riage Theorem.” Gerstein declares: “The proof is beyond the scope of our present

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-10.37.26
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s1-10.37.26
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treatment. . . .” We can also describe the result in terms of graph theory. We can

consider the bipartite graph with partite sets X and Y , and (x, y) as an edge of the

graph if and only if woman x finds man y as acceptable for marriage. The existence

of the desired function f is then equivalent to finding an X-saturating matching

of the bipartite graph. We will introduce some graph theory terminology in Sec-

tion 5.9. Graphs. Many more details are given in ETSU’s senior/graduate level

Introduction to Graph Theory (MATH 4347/5347 I have some online notes for this

class). In ETSU’s graduate level Graph Theory 2 (MATH 5450), a proof of Halls

Marriage Theorem is given (see Section 16.2. Matchings in Bipartite Graphs and

Theorem 16.4 “Hall’s Theorem”). An illustration of the graph and the matching

(in blue) is given below in an image from the Wikipedia Hall’s marriage theorem

page (accessed 1/31/2022).

https://faculty.etsu.edu/gardnerr/5347/notes-Hartsfield-Ringel.htm
https://faculty.etsu.edu/gardnerr/5347/notes-Hartsfield-Ringel.htm
https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem
https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem


3.2. Surjections, Injections, Bijections, Sequences 5

Example 3.12. Find a system of distinct representatives for the following family

of sets: {1}, {1, 2, 3, 8}, {3, 4}, {2, 4, 5}, {3, 6}, {1, 4, 7}, {6}.

Solution. Since there are seven sets, then we take the indexing set as I =

{1, 2, . . . , 7} and we look for an injection from I to ∪i∈IMi = {1, 2, . . . , 8} such

that f(i) ∈ Mi for all i ∈ I. We apply a “greedy algorithm” which is (informally)

a technique where make a choice at each step which seems to be best at the time,

but may later require some backtracking and modification of the choice. Here, we

go through the sets from first to last and choose a as a representative the least

number compatible with the choices already made (if possible). This gives the first

six representatives as 1, 2, 3, 4, 6, 7, but then we cannot choose a representative

from the last set. So we backtrack to fix this to get the modified choice:

1, 2, 3, 4, 6 6, 7

3

But this is also a problem, so we backtrack again to get:

1, 2, 6 3, 4, 6 6, 7

4 3

but this repeats representative 4, so again we modify to get:

1, 2, 6 3, 6 4, 6 6, 7

4 5 3

So we have the choice of distinct representatives: 1, 2, 4, 5, 3, 7, 6 (respectively).

By Hall’s Marriage Theorem, a solution exists. We see that this greedy algorithm

finds a solution. Notice that it is not a unique solution, since we could also take

the distinct representatives: 1, 8, 4, 2, 3, 7, 6 (respectively).
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Definition 3.13. A function f : A → B is bijective or a one-to-one correspondence

if it is both injective (i.e., one to one) and surjective (i.e., onto).

Note 3.2.C. Since a function is ultimately a set of ordered pairs (by Definition

3.2), we can classify a bijection f in terms of the set of ordered pairs: Function

f : A → B is a bijection if and only if each a ∈ A is the first coordinate of exactly

one pair belonging to f , and each b ∈ B is the second coordinate of exactly one

pair belonging to f . Notice that every injection is a bijection between its domain

and its range.

Definition 3.16. Let A be a set and let Nn = {x ∈ N | 1 ≤ x ≤ n} = {1, 2, . . . , n}.

A finite sequence in A is a function f : Nn → A for some n ∈ N. The length of this

sequence is n. An infinite sequence in A is a function f : N → A.

Note. In this class, we will use the term “sequence” to indicate either a finite or

an infinite sequence. This may be different from your use of the term in calculus,

where the term “sequence” mean “infinite sequence” (and you were concerned with

convergence or divergence of the sequence). However, notice that the definition of

infinite sequence given above is exactly the same as that given in Calculus 2 (with

set A = R; see my online Calculus 2 notes on Section 10.1. Sequences).

Note/Definition. In keeping with the notation for sequences given in Calculus

2, if we have infinite sequence f in set A where f(1) = ai, f(2) = a2, etc., then

https://faculty.etsu.edu/gardnerr/1920/12/c10s1.pdf
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we denote the sequence as a1, a2, a3, . . .. If f is a finite sequence of length n with

similar values, then we denote the sequence as (a1, a2, . . . , an), called an n-tuple

with ai as its ith coordinate. In any such sequence, we call ai the ith term. We use

various notation to indicate sequences: {ai}1≤i≤n, {an}n∈N, {an}n≥1.

Example 3.18. Consider the set N × N. Graphically, we can think of this as all

points in the first quadrant of the Cartesian plane with integer coefficients. See the

figure below (left). We wish to find a bijective function f : N → N×N; that is, we

wish to make a list of these point by picking a first one, a second one, etc. Notice

that we cannot start at point (1, 1) and then run along the bottom row of points

to the end, then start on the second row from the bottom at point (1, 2),. . . since

there is no end to the bottom row (or any of the other rows).

In this figure (left), we see a strategy to follow in constructing the desired bijection.

We go along diagonals that run upper left-lower right one at a time. These leads

to the sequence (1, 1); (1, 2), (2, 1); (1, 3), (2, 2), (3, 1); (1, 4), (2, 3), (3, 2), (4, 1);

(1, 5), etc. We now give an explicit formula for function f . Notice that points (a, b)

and (c, d) are on the same diagonal in the figure if and only if a + b = c + d (and

this sum increases by 1 each time we go “up” to the next diagonal), and on such

a diagonal point (a, b) precedes point (c, d) on their common diagonal if and only
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if a < c. The point (a, b) is on an “earlier” diagonal than point (c, d) if and only

if a + b < c + d. So we have the rule: point (a, b) precedes (c, d) on the list if and

only if a + b < c + d (i.e., (a, b) is on a lower diagonal than (c, d)) or a + b = c + d

and a < c (i.e., (a, b) and (c, d) are on the same diagonal with (a, b) earlier on the

diagonal than (c, d)). Now we give a recursive definition of the function based on

this strategy. Define f(1) = (1, 1). For k ≥ 1 and with f(k) = (a, b), define

f(k + 1) =

 (a + 1, b− 1) if b > 1

(1, a + 1) if b = 1.

Notice that when b = 1 we have reached the bottom of a diagonal, so we start over

in the first column of the next diagonal. When b > 1 and we are not at the bottom

of a row, we simply go over one (to a+1) and down one (to b−1) so that we go from

(a, b) to (a + 1, b− 1). It is intuitively clear that f is a bijection. None-the-less, we

now give an argument that it is surjective (onto). ASSUME that f is not surjective.

Then among the points (x, y) not in f(N), consider those whose coordinate sum

x + y is minimal (so this is the lowest diagonal with an omitted point), and among

those choose (a, b) as the point with the smallest first coordinate. If a 6= 1 (so that

the point is not in the first column) then (a− 1, b + 1) precedes (a, b) on the same

diagonal (since a−1 < a and (a−1)+(b+1) = a+b) and by the choice of (a, b) we

must have (a− 1, b+1) ∈ f(N); that is, f(k) = (a− 1, b+1) for some k ∈ N. Then

f(k + 1) = ((a− 1) + 1, (b + 1)− 1) = (a, b), CONTRADICTING the assumption

that (a, b) 6∈ f(N) when a 6= 1. If a = 1 (so that (a, b) is in the first column; also

we take b 6= 1 so that we are not considering point (1, 1)) then (a, b) = (1, b) and

(b− 1, 1) is at the bottom of the preceding diagonal and so by the choice of (a, b)

(as an omitted point on the lowest diagonal) we have (b − 1, 1) = f(k) for some
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k ∈ N. Then f(k + 1) = (1, (b − 1) + 1) = (1, b) = (a, b), CONTRADICTING

the assumption that (a, b) 6∈ f(N) when a = 1. Therefore the assumption is false

and f is, in fact, surjective. To show that f is injective, “the details are technical

and we omit them” (Gerstein, page 126). The figure above (right) hints that there

are other ways to “weave” through the array of points in the first quadrant, and

so other ways to construct bijection f . This figure is from my online notes for

Analysis 1 (MATH 4217/5217) for Section 1.3. The Completeness Axiom in which

it is being shown that the countable union of a countable collection of countable

sets is countable (see Theorem 1-19).

Note. In the next example we show that some sets cannot be put in a one-to-one

correspondence with N. When we address cardinalities of infinite sets in Section

4.3. Countable and Uncountable Sets, we’ll see that this implies that some infinite

sets are “bigger” than others!

Example 3.19. Let F denote the set of all functions from N to N. Can the

members of f be listed as a sequence? That is, is there a surjection g : N → F?

Note. The technique used in the solution to Example 3.19 is called the “Cantor

diagonalization argument.” You will see this argument again in Analysis 1 (MATH

4217/5217); see my online supplemental notes for Section 1.3. The Completeness

Axiom and notice the proof of Theorem 1-20: “The real numbers in (0, 1) form an

uncountable set.” In this class, we address these ideas in Section 4.3. Countable

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
https://faculty.etsu.edu/gardnerr/4217/Beamer-proofs/Proofs-1-3-Kirkwood-print.pdf
https://faculty.etsu.edu/gardnerr/4217/Beamer-proofs/Proofs-1-3-Kirkwood-print.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf
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and Uncountable Sets. Gerstein illustrates the Cantor diagonalization argument

with the following image (form page 127):

Each function gn : N → N in the solution/proof of Example 3.19 is a sequence of

natural numbers. We can imagine laying out the terms of the sequences in the

squares of the checkerboard, so that the first row contains the first sequence, and

so forth. Then by creating a new sequence that results from taking as its first

term something different from the natural number in the first darkened square (by

adding 1 to it, for example, as is done in Example 3.19), we know that the newly

created sequence will not equal the original first sequence (since the first term is

different). Next, we move to the natural number in the second darkened square on

the diagonal and make the second term in the new sequence something different

from this entry, so that the new sequence is different from the second sequence

because the second terms are different. Similarly, move down the diagonal picking

numbers different than those in the black boxes as the entries of the new sequence.

For example, if m is the entry in the kth diagonal black box, then make the kth

entry of the new sequence m+1 (as in the Example 3.19), so that the new sequence

is different for kth sequence (since they differ in the kth coordinate). We’ll use this

idea again in Chapter 4, “Finite and Infinite Sets.”

Revised: 2/1/2022
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https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-3.pdf

