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Chapter 4. Finite and Infinite Sets

4.1. Cardinality; Fundamental Counting

Principles

Note. In this section, we start the conversation by consider the “Hilbert hotel”

and some of the surprising behavior of infinite sets. We define what it means

for two sets to be of the same cardinality (though we don’t define a “cardinal

number”). We show that all intervals of real numbers are of the same cardinality,

we define finite sets and infinite sets, we prove some unsurprising results on the

cardinalities of finite sets (including the Pigeonhole Principle), and prove several

counting principles related to finite sets.

Note. To start the discussion of infinite sets, Gerstein tells a story about a hotel

that has (countably) infinitely many rooms labeled 1, 2, . . . , where each room is

occupied. If another person shows up and wants a room, then the current occupants

can move to different rooms in such a way as to free up a room. The person in

room n can simply move to room n + 1 for each n ∈ N. Then room 1 is available

and the new person can stay in that room. If k new people show up, then they

can be accommodated by moving the person in room n to room n + k. In fact,

if a (countably) infinite number of people show up looking for a room, then they

can also be accommodated. Simply move the person in room n to room 2n for

n ∈ N. This frees up all of the odd numbered rooms and the infinite number of

new people can then occupy those rooms. In this story, the hotel is often called
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the “Hilbert hotel” after the famous 19th and 20th century mathematician David

Hilbert (January 23, 182–February 14, 1943).

Definition 4.1. Sets A and B have the same cardinality or the same cardinal

number if there is a bijection f : A → B. We then say that A and B are equipotent

sets, denoted A ≈ B. We may also say that sets A and B are in one-to-one

correspondence. If A and B are not equipotent, then we write A 6≈ B.

Note. The next result gives some (unsurprising) properties of equipotent sets.

Theorem 4.2. Let A, B, C be sets. Then

(a) A ≈ A,

(b) A ≈ B implies B ≈ A, and

(c) A ≈ B and B ≈ C implies A ≈ C.

Consequently, if S is any collection of sets, then equipotence is an equivalenece

relation on S.

Example 4.4. Let X be a set with ten elements, let S be the set of all seven-

element subsets of X, and let T be the set of all three-element subsets of X. Then

S ≈ T .
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Example 4.5. If a, b ∈ R with a < b, consider the open interval Ib
a = {x ∈ R |

a < x < b}. Define f : Ib
a → I1

0 by x
f7→ x− a

b− a
. Notice that the graph of f in the

Cartesian plane is a line of slope 1/(b− a) > 0 that maps a to 0 and maps b to 1.

So x1 < x2 implies that f(x1) < f(x2), and hence f is injective (one to one). Also,

f is surjective (onto) since for any t ∈ I1
0 we have for x = a + t(b − a) ∈ Ib

a that

f(x) = t. That is, f is a bijection and so Ib
a ≈ I1

0 . Since a and b are arbitrary real

numbers (with a < b), then we see that any bounded interval of real numbers is

equipotent with the interval I1
0 and, by Theorem 4.2(c), any two bounded intervals

of real numbers are equipotent. Recall that the mapping x 7→ tan x is a bijection

mapping I
π/2
−π/2 to R (consider the graph of y = tan x), so that I

π/2
−π/2 ≈ R. As

Gerstein puts it (page 144):

“Every open interval, no matter how short, is in one-to-one correspon-

dence with the set R of real numbers. Therefore any two open intervals

have the same cardinality (even if one interval is properly contained in

the other).”

Definition 4.7. A set S is finite if S = ∅ or S ≈ Nn = {x ∈ N | 1 ≤ x ≤ n} for

some n ≥ 1 (where n is some given element of N). We denote this as #∅ = 0 and

#S = n, respectively. We read #S as “the number of elements in S,” provided

S is a finite set). A set is infinite if it is not finite. To count a finite set S is to

establish a bijection f : Nn → S for some n ∈ N or to recognize S is empty.

Note. We now state and prove several counting results which are intuitively clear

but sometimes a challenge to prove.
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Theorem 4.8. Let n and m be nonnegative integers with n > m.

(a) There is no injection from Nn to Nm, and hence Nn 6≈ Nm.

(b) If A is a set and #A = n, then #A 6= m.

Corollary 4.9. The Pigeonhole Principle.

Let A and B be nonempty finite sets, with #A > #B. Then there is no injection

from A to B. Thus for any function A → B, some element in B has at least two

preimages.

Note. Gerstein describes the pigeonhole principle intuitively as (page 146): “‘If

n pigeons fly into m pigeonholes and n > m, then some pigeonhole receives at

least two pigeons.” A “pigeonhole” also represents a collection of boxes into which

into which something is put (possibly pigeons, but more commonly mail). If the

number of pieces of mail (say) exceeds the number of boxes, then some box must

get at least two pieces of mail.

Example 4.10(b). We claim that in any set of eleven integers, there are two

whose difference is divisible by 10. Let set A be the set of 11 integers so that

#A = 11. Let B = {0, 1, 2, . . . , 9} so that #B = 10. Define f : A → B where f

maps a ∈ A to the its right-hand digit. Since 11 = #A > #B = 10, then by the

Pigeonhole Principle f is not an injection. So it must be that some two elements

a1, a2 ∈ A are mapped by f to the same element of B, f(a1) = f(a2) = b. But
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then the right-most digit of a1 − a2 is 0 and so a1 − a2 is divisible by 10. That is,

a1 and a2 are two integers in set A whose difference is divisible by 10.

Theorem 4.11. Every subset of Nn is finite, and if A ⊂ Nn (that is, A is a proper

subset of Nn, A ( Nn) then #A = m for some m < n.

Theorem 4.12.

(a) Every subset of a finite set is finite.

(b) Every set containing an infinite set is infinite.

(c) If A ⊂ B (that is, A ( B) and B is finite then #A < #B.

Note. We have not formally shown that an infinite set exists yet. The next result

finally resolves this. Of course we never questioned the existence of infinite sets,

but this result shows that our approach (in terms of definitions and axioms, though

axioms have played a minor role here) is a reasonable one.

Theorem 4.13. The set N of natural numbers is infinite.

Note. We now consider several results which relate to counting finite sets. You

may have seen some of these results in Foundations of Probability and Statistics-

Calculus (MATH 2050).

https://faculty.etsu.edu/gardnerr/2050/Stats-Calc-Based-notes.htm
https://faculty.etsu.edu/gardnerr/2050/Stats-Calc-Based-notes.htm
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Theorem 4.14. Addition Rule. If A and B are disjoint finite sets, then A ∪ B

is finite and #(A ∪B) = #A + #B.

Note. Recall that sets A1, A2, . . . , Am are pairwise disjoint if Ai∩Aj = ∅ whenever

i 6= j (see Exercise 2.6.4). The next result is a generalization of the Addition Rule

and follows by induction from Theorem 4.14.

Corollary 4.15. If A1, A2, . . . , Am are pairwise disjoint finite sets, then ∪m
i=1Ai is

finite and

#

(
m⋃

i=1

Ai

)
= #A1 + #A2 + · · ·+ #Am.

Note. The next result considers #(A ∪ B) for finite A and B, but where A and

B may not be disjoint. This is a special case of the Inclusion Exclusion Principle

which arises in elementary probability theory. See my online notes for Mathemat-

ical Statistics 1 (STAT 4047/5047) on Section 1.3. The Probability Set Function;

notice Theorem 1.3.A and Theorem 1.3.B. My online notes for Intermediate Prob-

ability and Statistics (not an official ETSU class) on Section 1.10. The Probability

of a Union of Events includes an inductive proof of the general Inclusion Exclusion

Principle (these statistics notes deal with the principle in terms of probabilities in-

stead of cardinalities, but the technique of proof is easily translated to our setting).

The Inclusion Exclusion Principle for three sets is addressed in Exercise 4.1.9 and

the general case is considered in our Section 6.6. The Inclusion-Exclusion Principle

and Euler’s Function.

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-3.pdf
https://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-10.pdf
https://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-10.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-6.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-6.pdf
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Corollary 4.16. If A and B are finite sets (not necessarily disjoint), then A ∪ B

is finite and

#(A ∪B) = #A + #B −#(A ∩B).

Note. We now turn our attention from unions of sets to Cartesian products of two

sets.

Theorem 4.17. if #A = m and #B = n, then #(A×B) = mn.

Corollary 4.18. Let A = {a1, a2, . . . , am}, and for each i satisfying 1 ≤ i ≤ m, let

Bi be a set with #Bi = n. Then #(∪m
i=1({ai} ×Bi)) = mn.

Note. Gerstein gives the following “intuitive interpretation” of Corollary 4.18 (see

page 151):

“Suppose two choices are to be made in succession. If there are m

possibilities for the first choice and, once the first choice has been made,

n possibilities for the secondindependent of the outcome of the first

choicethen there are mn possibilities for the ordered pair of choices.

In introductory probability, this idea is called the Multiplication Rule; see my online

notes for Mathematical Statistics 1 (STAT 4047/5047) on Section 1.3. The Proba-

bility Set Function (notice Rule 1) and my online notes for Intermediate Probability

and Statistics (not an official ETSU course) on Section 1.7. Counting Methods (see

Theorem 1.7.2.).

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-3.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-3.pdf
https://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-7.pdf
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Note. Recall that we defined the Cartesian product of two sets in Section 2.8.

Ordered Pairs and Cartesian Products; see Definition 2.43. We now define the

Cartesian product of any finite number of sets.

Definition 4.20. Let A1, A2, . . . , An be sets. The Cartesian product A1 × A2 ×

· · · × An is the set of all n-tuples (a1, a2, . . . , an) such that ai ∈ Ai for 1 ≤ i ≤ n.

Note. We now generalize Theorem 4.17 to Cartesian products of more than two

sets. Of course, the Multiplication Rule can be applied to this setting as well.

Theorem 4.21. Suppose A1, A2, . . . , An are finite sets, with #Ai = mi for 1 ≤

i ≤ n. Then the Cartesian product A1 × A2 × · · · × An is also finite, and #(A1 ×

A2 × · · · × An) = m1m2 · · ·mn.

Example 4.23. A state motor vehicle bureau has decided that all license plates

must have exactly seven characters. They agree that the characters will be chosen

from the English alphabet A, B, . . . , Z or from the numerals 0, 1, . . . , 9, but they

are still discussing whether the characters should satisfy some further conditions.

In each of the following cases determine the number of licenses that satisfy the

given condition.

(a) Each character can be any letter or numeral.

Solution. Combining the 26 letters and 10 numerals, there are 36 possible

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-8.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-8.pdf
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characters. With n = 7, A1 = A2 = · · · = A7 equal to the set of 36 characters,

so that m1 = m2 = · · · = m7 = 36, and treating a license plate as a 7-tuple,

we have that the possible number of license plates is m1 ·m2 · · · · · · ·m7 = 367,

by Theorem 4.21.

(b) The first three characters are letters and the last four are numerals.

Solution. Again with n = 7, but this time with A1 = A2 = A3 as the set of

26 letters, and A4 = A5 = A6 = A7 as the set of 10 numerals, we now have by

Theorem 4.21 that the possible number of license plates is m1 ·m2 · · · · ·m7 =

(263)(104).

(c) Three consecutive characters (not necessarily the first three) are letters and

the others are numerals.

Solution. We use the Multiplicative Rule more “hands on” here. First, we

decide how many ways there are to choose the location of the three consecutive

letters. The first of these letters can appear in the first, second, third, fourth,

or fifth position, so there are 5 possible choices for the locations of the letters.

As in (b), there are then (26)3 ways to choose the three consecutive letters,

and there are (10)4 ways to choose the four numerals. So the total number of

possible licenses is 5(26)3(10)4.

(d) Exactly three characters are letters and the others are numerals.

Solution. Similar to pat (c), we first decide how many ways there are to

choose the location of the three letters. This is computed as “7 choose 3,”

which is (
7

3

)
=

7!

3!(7− 3)!
=

7!

3!4!
=

(7)(6)(5)

(3)(2)(1)
= 35.
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We will discuss this idea of combinations more in Chapter 5, but you were

also exposed to this in Calculus 2 (MATH 1920); see my online Calculus 2

notes on Section 10.10. The Binomial Series and Applications of Taylor Series

where combinations are used in determining the binomial coefficients. As in

part (c), each of these 35 cases then allow (26)3(10)4 license plates, for a total

of 35(26)3(10)4 possible licenses.

(e) Suppose the agreement that each license will have exactly seven characters

is abandoned. Instead it is decided that a license must have at most seven

characters, and each character can be any letter or numeral. (No car will get

a blank license.)

Solution. Since we now can use all 36 characters, there are 36 licenses with

one character, and (by repeated application of Theorem 4.21) 362 licenses with

two characters, 363 licenses with three characters, . . . , 367 licenses with seven

characters. So the total number of licenses is (Corollary 4.15, if you like)

36 + 362 + 363 + · · · = 367. �
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