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4.2. Comparing Sets, Finite or Infinite

Note. In this section, we extend some of the cardinality ideas for finite sets (from

the previous section) to infinite sets. In particular, we define what it means for one

infinite set to have a cardinality less than (and less than or equal to) the cardinality

of another infinite set. We start with a result concerning the empty set.

Lemma 4.25. If A is any set, then ∅ is an injective function from ∅ to A.

Note. The next result concerning cardinalities of finite sets and the existence of

injections and/or bijections is the motivation for how we deal with infinite sets

when addressing cardinalities.

Theorem 4.26. Let A and B be finite sets. Then

(a) #A ≤ #B ⇔ There is an injection from A to B,

(b) #A = #B ⇔ A ≈ B, and

(c) #A < #B ⇔ There is an injection but no bijection from A to B.

Note. Since we can just as easily consider injections and bijections between infinite

sets as we can between finite sets, then we use Theorem 4.26 to inspire the next

definition. Notice that the definition in the case of finite sets is simply a statement

of Theorem 4.26 (so we have consistence with previous ideas).
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Definition 4.27. Let A and B be sets (finite or infinite). Define

(a) #A ≤ #B if there is an injection from A to B,

(b) #A = #B if A ≈ B, and

(c) #A < #B if there is an injection but no bijection from A to B.

Note. Gerstein states (see page 160): “We have given meaning to the statement

#A < #B (and the other statements in [Definition] 4.27) without explicitly defin-

ing the symbol #A when A is infinite. (To do so would take us deeper into the

foundations of mathematics then we intend to go).” For those interested in going

into this in depth, consider my online notes for Introduction to Set Theory (not a

formal class at ETSU), especially the chapters on cardinal numbers and Alephs. A

“cardinal number” is associated with the cardinality of a set, and sets of the same

cardinality are associated with the same cardinal number. However, it is best to

use the expression “the number of elements in a set” only when the set if finite!

Gerstein (also on page 160) refers to the blanket use of this expression (even for

infinite sets) as using the term ‘number’ “casually.”

Note. We would expect that ≤ on cardinal numbers would satisfy the same prop-

erties as ≤ on the natural numbers. Of course we have #A ≤ #A since the identity

mapping is an injection from A to A. We also have

#A ≤ #B and #B ≤ #C ⇒ #A ≤ #C,

since #A ≤ #B means there exists an injection i1 from A to B and #B ≤ #C

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes.htm
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means there exists an injection i2 from B to C so that (by Theorem 3.24(a)) i2 ◦ i1

is an injection from A to C, so that #A ≤ #C. But to show transitivity for

inequalities involving <, we need the result we state next. This result was first

published in 1887 by Georg Cantor (March 3, 1845-January 6, 1918), but without

proof. Ernst Schröder (November 25, 1841–June 16, 1902) announced a proof in

1896 and independently Felix Bernstein (February 24, 1878–December 3, 1956), at

age 19, gave a proof. For this reason, the result is known variously as the Schröder-

Bernstein Theorem or the Cantor-Schröder-Bernstein Theorem. This history is

from the Schröder-Bernstein Theorem Wikipedia page. We omit the proof but,

like Gerstein, metion that a proof can be found in Paul Halmos’ Naive Set Theory

(Princeton: D. Van Nostrand Company, 1960; NY: Springer-Verlag, 1974; Dover

Publications, 2017). See my online notes for Naive Set Theory (see Section 22).

Theorem 4.28. Schröder-Bernstein Theorem.

Let A and B be sets. If #A ≤ #B and #B ≤ #A then A ≈ B.

Example 4.29. We now show that the intervals (0, 1) and [0, 1] are equipotent:

[0, 1] ≈ (0, 1). We show the existence of an injection from each of the intervals to

the other so that we can conclude #(0, 1) ≤ #[0, 1] and #[0, 1] ≤ #(0, 1). Then

by the Schröder-Bernstein Theorem we can conclude #(0, 1) = #[0, 1]. First the

inclusion mapping from (0, 1) to [0, 1] is an injection so that we have #(0, 1) ≤ [0, 1].

Second, in the other direction we map [0, 1] to (0, 1) by “shrinking” [0, 1] uniformly.

Consider f(x) = x/2 + 1/4. Then f is an injection from [0, 1] to (0, 1) (in fact,

https://en.wikipedia.org/wiki/Schroder-Bernstein_theorem
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/Halmos-notes.htm
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the image of [0, 1] under f is [1/4, 3/4] ⊂ (0, 1)). Hence #[0, 1] ≤ #(0, 1) and

the claim now holds. Notice that since we have shown that [0, 1] ≈ (0, 1) then a

bijection between the sets exists. Exercise 4.2.4 addresses the construction of a

specific bijection.

Theorem 4.30. Let A, B, and C be sets. Then

(a) #A < #B < #C ⇒ #A < #C,

(b) #A < #B ≤ #C ⇒ #A < #C, and

(c) #A ≤ #B < #C ⇒ #A < #C.

Note. Proof of parts (b) and (c) of Theorem 4.30 are left as exercises. The

next result, also due to Georg Cantor, show that some infinite sets have larger

cardinalities than others. The corollary to it shows that there is not “largest set”

(in terms of cardinality.

Theorem 4.31. Cantor’s Theorem (I).

Let S be a set with power set P (S). Then #S < #P (S).

Corollary 4.32. #N < #P (N)#P (P (N)) < #P (P (P (N))) < · · · .

Note. Georg Ferdinand L.P. Cantor was born in in Saint Petersburg, Russia

in 1845. At age 11 his family moved to Germany. He attended the University
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of Berlin (he was friends with Hermann Schwarz, of the Schwarz Inequality or

the Cauchy-Schwarz Inequality from linear algebra). He attended lectures of Karl

Weierstrass and Leopold Kronecker. He finished his dissertation on number theory

in 1867. At the encouragement of his colleague, Eduard Heine (of the Heine-Borel

Theorem fame) his research turned to analysis. He worked on trig series, and

defined irrational numbers in terms of convergent sequences of rational numbers.

This definition was referenced by Richard Dedekind in his successful development

of the idea of completeness of the real numbers in terms of Dedekind cuts. In

1873, Cantor proved that the rational numbers are countable. He also showed the

algebraic numbers (that is, real numbers that are roots of polynomials with integer

coefficients) are countable. In December 1973 he proved that the real numbers are

not countable and published this in 1874 (this is where the idea of a one-to-one

correspondence enters in relation to cardinality). He further elaborated on these

ideas in an 1878 paper. Between 1879 and 1884 he published six papers on set

theory. Cantor’s theory of sets was not accepted as widely as he had hoped and

it was drawing criticism. In May 1884 Cantor had an attack of depression that

lasted a few weeks. It was speculated that his depression was the result of the

criticism that he suffered through, but in light of modern ideas of mental illness

this is not thought to be a major contributor to his problems. Cantor’s last major

set theory papers were published in 1895 and 1897 (he had been working on the

Continuum Hypothesis, the claim that there is no set of cardinality greater than

the cardinality of the natural numbers and less than the cardinality of the real

numbers, and he wanted to include a proof of this in his papers, but he could

not find one; this claim turn out to be neither true nor false under the accepted
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axioms of set theory. . . ). Following this time and some personal tragedies, Cantor

continued to suffer depression. He took a leave from teaching in the winter semester

of 1899-1900, and spent time off-and-on in a sanatorium from 1899 onwards. He

formally retired in 1913. He entered a sanatorium in 1917 and died of a heart

attack January 6, 1918. This biographical information and the following image are

from the MacTutor History of Mathematics Archive biography of Cantor.

Georg Cantor

March 3, 1845–January 6, 1918

We give proofs of some of Cantor’s results in the next section.
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