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4.3. Countable and Uncountable Sets

Note. In this section we finally define a “countable set” and show several sets to

be countable (such as Z, Q, and N × N). We prove Cantor’s Theorem (II): The

real numbers are not countable.

Definition 4.33. A set S is countably infinite if N ≈ S; that is, if there is a bijection

from N to S. A set is countable (or denumerable) if it is finite or countably infinite.

A set that is not countable is uncountable, uncountably infinite, or nondenumerable.

Note. The natural numbers N are a very reasonable model for the idea of “count-

ably infinite.” For any countable set, there is a first element (say s1 = f(1) where

f : N → S), a second element s2 = f(2), and so forth. With this in mind, the next

is maybe not too surprising. The real surprise will come below when we show that

there is an uncountable set (namely, R). So, no matter how we attempt to “list”

the real numbers, no such list exists.

Example 4.34. The set of integers Z is countably infinite.

Note. The next result formally justifies the Hilbert hotel story (the version given

by Gerstein) in Section 4.1. Cardinality; Fundamental Counting Principles.

Theorem 4.35. If A is finite and B is countable then A ∪B is countable.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
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Theorem 4.36.

(a) Every subset of a countable set is countable.

(b) Every infinite set contains a countably infinite subset.

Note. Like Gerstein, we “leave the proof [of Theorem 4.36] for a later course

in set theory.” This is covered in Introduction to Set Theory (not a formal ETSU

class). A proof of part (a) of the previous theorem is given in Section 4.3. Countable

Sets; see Theorem 4.3.2. A proof of (b) of the previous theorem (which requires the

Axiom of Choice) is given in Section 9.1. The Axiom of Choice and Its Equivalence;

see Theorem 9.1.4. These notes are currently (spring 2022) in preparation and these

two links may not work.

Note. We now give some results concerning results for countable sets that are

analogous to previous results shown for finite sets. In the rest of this section when

claiming a mapping is a bijection, we will not go into the level of detail as we have

previously. . . we “leave this as an exercise,” if you like!

Theorem 4.37. If A and B are countable sets then A ∪B is countable.

Note. By the Principle of Mathematical Induction, we have the next corollary to

Theorem to 4.37.

https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-4-3.pdf
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-4-3.pdf
https://faculty.etsu.edu/gardnerr/Set-Theory-Intro/notes/Hrbacek-Jech-9-1.pdf
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Corollary 4.38. If A1, A2, . . . , An are countable sets, then ∪n
i=1Ai is countable.

Note. We take advantage of the Fundamental Theorem of Arithmetic in the proof

of the next result. Recall that a prime number p > 1 is an integer having no factor-

ization of the form p = ab where a > 1 and b > 1 are integers. The Fundamental

Theorem of Arithmetic states that every integer n > 1 can be uniquely written as

a product of prime numbers. We’ll see a proof of this in this course in Section 6.3.

Divisibility: The Fundamental Theorem of Arithmetic; see Theorem 6.29. We also

prove this in Elementary Number Theory (MATH 3120); see my online notes for

this on Section 2. Unique Factorization; notice Theorem 2.2.

Theorem 4.39.

(a) N× N is countably infinite.

(b) If A and B are countable then A×B is countable.

Note. In this course we introduce just on infinite “cardinal number.” We use the

symbol ℵ0, read “aleph naught,” to indicate the cardinality of a countably infinite

set. If set A is countably infinite, then we write #A = ℵ0. The next surprising

result claims that #Q = ℵ0.

Theorem 4.40. The set of rational numbers Q is countable.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
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Note. We use the Cantor diagonalization method again (as we did in Section 3.2.

Surjections, Injections, Bijections, Sequences) to prove the counterintuitive result

that the real numbers are an infinite set larger than the infinite set N (that is, #R 6=

ℵ0). The proof requires a unique decimal representation of a real number. We claim

that every real number with a finite decimal representation, has a representation in

which the last nonzero decimal is decreased by 1 and then followed by an infinite

number of 9’s. For example, 0.35 = 0.34999 · · · and 1.0 = 0.9999 · · · . You will

see the proof of the next theorem again in Analysis 1 (MATH 4217/5217); see

my online Analysis 1 notes on Section 1.3. The Completeness Axiom and notice

Theorem 1-20.

Theorem 4.41. Cantor’s Theorem (II).

The set of real numbers R is uncountable.

Note. We could have represented each number in I = (0, 1) in binary (i.e., base

2) so that the only digits are 0 and 1. Then Cantor’s diagonalization argument

is a bit cleaner; we run along the diagonal in the proof and change 0’s to 1’s and

change 1’s to 0’s.

Corollary 4.42. The set of irrational numbers is uncountable.

Example 4.43. This example gives a cute geometric result using an argument

based on cardinalities of sets. Since Q is countable by Theorem 4.10, the set Q×Q

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-3-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-3-2.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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is countable (this follows by an argument similar to that for Theorem 4.39 for

N × N). In the Cartesian plane, Q × Q corresponds to the points having rational

coordinates. If A and B are distinct points in the xy-plane and not in Q×Q, then

A and B can be connected by a path that contains no points in Q×Q.
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