
4.5. Languages and Finite Automata 1

4.5. Languages and Finite Automata

Note. This section addresses, in a general sense, language, the solvability of prob-

lems, and the complexity of problems. The main concern is the limitations of the

language in which we are working (by it mathematical language or a program-

ming language). We will take a language to be a collection of strings of symbols

from some alphabet. This is addressed at this stage of the course because it is

approached with the tools of sets and cardinality.

Definition 4.45/4.47. An alphabet Σ is a finite nonempty set. For nonnegative

integer n, a word (or string) w of length n over the alphabet Σ is a function w :

N → Σ.

Note/Definition. If word w maps i
w7→ ai for 1 ≤ i ≤ n, then we denote w as

w = a1a2 . . . an. When n = 0 we have w = ∅ (because N0 = ∅) and w is the empty

word, often denoted ε. The set of all words over Σ, including the empty word, is

denoted Σ∗. For word w ∈ Σ∗, the length of w is denoted |w|.

Example 4.46/4.48. Examples of alphabets are {♠}, {a, b, c, . . . , z}, and {0, 1}.

Some words of length three over these alphabets, respectively, are ♠♠♠, zap, and

001.

Theorem 4.49. If Σ is an alphabet then Σ∗ is countably infinite.

4.5. Languages and Finite Automata 2

Definition 4.50. Let Σ be an alphabet. A subset L ⊆ Σ∗ is a language over Σ.

Theorem 4.51. Let Σ be any alphabet. Then there are uncountably many lan-

guages over Σ.

Note. Suppose we want to “describe” a language. We do so using a finite numbers

of words (to describe it in a familiar way; we could also introduce a space and other

punctuation as additional letters in the alphabet and then the whole description

is simply a single, but long, word). But for alphabet K, the set of words K∗

is countable (Theorem 4.49). However, the number of languages is uncountable

(Theorem 4.51). So not all languages are describable. So the plan is to describe

some languages, hopefully some of the useful ones! In this section, we imagine a

mathematical model of a computer that reads strings over a given alphabet and

“accepts” them or not according to whether they satisfy certain criteria (think of

this as the computer determining if the statement is in some given language or

not).

Note. We now describe the model of a machine designed for language recognition.

Suppose it allows for the input of letters and words (through a keyboard, say).

When the machine is first turned on, it is in its initial state, denoted q0. The

condition of the machine as it reacts to inputs determines the state of the machine

at various times, and we denote the finite set of all states as S. As a symbol

from Σ is input into the machine, its state changes depending on the symbol and

4.5. Languages and Finite Automata 3

the current state of the machine. For the current state q ∈ S and the entry of the

symbol σ ∈ Σ, the ordered pair (q, σ) determines a unique new state denoted δ(q, σ)

(“in a deterministic way,” as Gerstein says on page 179). For language recognition,

we require that there is a subset F ⊆ S such that whenever the machine is in a

state in set F , the machine has accepts the data entered. We formalize this in the

next definition.

Definition 4.52. A finite automaton (or finite-state machine) is a five-tuple M =

(S, Σ, δ, q0, F) where

S is a finite nonempty set (the set of state);

Σ is a finite nonempty set (the alphabet);

δ is a function from S × Σ to S (the transition function);

q0 ∈ S (the initial state);

F is a subset of S (the set of final state).

Example 4.53(a). Consider an automaton M that reads alphabet Σ = {a, b}

and suppose the states are S = {q0, q1}. Let q0 the the initial state and the only

final state (so that F = {q0}). Suppose that reading a changes the state of the

machine (an unambiguous description, since there are only two states). Suppose

that reading b does not change the state. Then the transition function δ can be

described by the table given below. The current state q is given in the column on

the left, the input σ is given in the row on the top, and the corresponding entry in

the table is the new state δ(q, σ).

4.5. Languages and Finite Automata 4

@
@

@
@

@@
q

σ
a b

q0 q1 q0

q1 q0 q1

Example 4.53(b). This is a bit of a silly example, but it is more complicated

that the example in 4.53(a). Quoting from Gerstein (page 180):

“David wakes up in the morning and checks the weather. If it is sunny

he goes fishing; if it is rainy he goes to the movies. He is happy if he

sees a good movie or if he finds that the fish are biting; otherwise he is

sad. Not every input condition will change David’s state; for example,

if he has gone to the movies or if he has just awakened, then he is

unaffected by the activities of the fish. Once David’s mood is set, it

doesn’t change. His criterion for ‘accepting’ the day is that the events

make him happy.”

Let M = (S, Σ, δ, q0, F) be the automaton representing David’s situation, where

S = {wakeup, fishing, movies, happy, sad}

Σ = {sunny, rainy, biting, not biting, good movie, poor movie}

q0 = wakeup

F = {happy}

Notice that we are taking words here as the letters in alphabet Σ. We get the table

for the transition function δ as given below.

4.5. Languages and Finite Automata 5

@
@

@
@

@@
q

σ
sunny rainy biting not biting good move poor movie

wakeup fishing movies wakeup wakeup wakeup wakeup

fishing fishing fishing happy sad fishing fishing

movies movies movies movies movies happy sad

happy happy happy happy happy happy happy

sad sad sad sad sad sad sad

Note/Definition. An easier way to visualize an automaton than the tables given

in Example 4.53 is to consider a directed graph which represents the transitions.

For automaton M , we create the directed graph, called the transition diagram or

the state graph, by defining the vertices (or nodes) as the states in set S, and the

arcs (or directed edges) are labeled with the symbols from Σ. We have an arc σ

from vertex q1 to vertex q2 if M goes from state q1 to state q2 when σ is entered

(that is, when δ(q1, σ) = q2). We circle the vertices representing the final states.

We then get the following transition diagrams for the two automata considered in

Example 4.53 (where labels are omitted on arcs that do not cause a state change

in the diagram for Example 4.53(b)).

4.5. Languages and Finite Automata 6

Note. Previously, we considered a transition function δ based on the entry of a

single symbol σ. We now extend this to transition functions of several symbols

(namely, of words in Σ∗), so that δ maps S×Σ∗ → S. This is really just dealt with

by recursion using the transition function. When σ1 is input then the machine goes

from state q to state δ(q, σ1). Then when σ2 is input the machine goes to state

δ(δ(q, σ1), σ2), denoted δ(q, σ1σ2), and so forth. so we have the recursive definition

δ(q, σ1σ2 · · ·σkσk+1) = δ(δ(q, σ1σ2 · · ·σk), σk+1). To complete the recursive definition

of δ : S × Σ∗ → S, we define δ(q, ε) = q for all q ∈ S (so no input results in no

change of state).

Definition 4.57. Let M = (S, Σ, δ, q0, F) be a finite automaton, and let w ∈ Σ∗.

We say that M accepts w if δ(q0, w) ∈ F . Define the language accepted by M to be

the language L(M) = {w ∈ Σ∗ | M accepts w}.

Note. Notice from the previous definition that if a word w results in M going from

its initial state q0 to some final state in F , then we have that “M accepts w.” You

might think of the unacceptable words as those for which the machine reaches no

conclusion.

Example 4.58. (a) Let M be automaton of Example 4.53(a) (with the transition

diagram given above). Since input b does not change the state, but input a changes

the state from q0 to q1 (or q1 to q0), then any word with an even number of a’s will

result in the machine in the final state q0 (remember, M starts in state q0). So the

4.5. Languages and Finite Automata 7

language accepted by M , L(M), is the set of all words with an even number of a’s.

(c) At the extremes, consider M = (S, Σ, δ, q0, F). If F = S then L(M) = Σ∗

since every state is a final state. If F = ∅, then L(M) = ∅ (since there is no final

state).

(d) Let Σ = {a, b} and suppose M has the following transition diagram:

A word in L(M), other then ∅, must end with b to reach state q0 ∈ F from state q1.

The only way to reach q0 if from q1 having read symbol b, and the only way to reach

q1 is from q0 having read symbol a. So the only words in the language accepted by

M , L(M), are ∅ and words starting with a, ending with b and alternating between

a’s and b’s: ababab · · · abab.

(e) With this example, we take on the problem of finding machine M such that

the language it accepts is given. We take as L(M) the set of words accepted in (d),

except for the empty string. We start with the transition diagram from (d), but

instead of having q0 as a final state, we label the final state as q4 (in place of the

location of q0 in (d)) and introduce two new vertices q0 and q3:

4.5. Languages and Finite Automata 8

Starting at q0, we see that if we have two consecutive a’s then we get “trapped”

at state q2 (as is the case if we start with b). So we must start with ab which puts

M in state q4 where it then accepts the words accepted in (d). That is, this is

a transition diagram of a machine M with L(M) consisting precisely of all words

starting with a, ending with b and alternating between a’s and b’s, ababab · · · abab

(and excludes the word ∅), as desired.

Note. In any transition diagram, for each vertex there must be exactly on arc

emanating from it corresponding to each symbol. If we have a transition diagram

for a language, then it is easy to test a particular string to see if it is in L(M).

We now give a name to those languages which are “realizable” as the language

accepted by some machine M .

Definition 4.59. A language L is regular if L = L(M) for some finite automaton

M .

Note. Some regular languages are given in Example 4.58. It can be shown that

every finite language is regular. This is called Kleene’s Theorem, which follows from

Kleene’s algorithm given in Stephen C. Kleene’s “Representation of Events in Nerve

Nets and Finite Automate,” Automata Studies, Annals of Mathematical Studies

Princeton University Press 34, 1–44 (1956); see Section 9, accessed 2/13/2022.

Exercise 4.5.5 gives some idea of he technique of proof. An infinite language may

not be regular. The Pumping Lemma (Lemma 4.60, below) is useful in proving

that some languages are not regular. We need one more definition.

https://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf
https://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf

4.5. Languages and Finite Automata 9

Definition. If Σ is an alphabet and x and y are words in Σ∗, then the concatenation

of x and y, denoted xy, is the word obtained by following x with y.

Lemma 4.60. Pumping Lemma.

Let Σ be an alphabet, and let L ⊆ Σ∗ be an infinite regular language. Then there

are strings x, y, z in Σ∗, with y 6= ε, such that for every n ∈ N the string xynz

belongs to L.

Example 4.61. (a) Consider the language of words of Σ = {a, b}, consisting of all

strings formed by following a string of a’s with a string of b’s of the same length:

L = {anbn | n > 0}. We claim that L is not regular and show this by contradiction.

ASSUME L is regular. Then by the Pumping Lemma (Lemma 4.60) there exist

strings a, y, z ∈ {a, b}∗, with y 6= ∅, such that xynz ∈ L for all n > 0. Now y

cannot be a string of only a’s, since then the string xynz would have more a’s than

b’s when n > 1, contradicting the definition of L. Similarly, y cannot be a string

of b’s only. If y has both a’s and b’s, then xy2z has some b’s preceding some a’s

and so xy2z is not in L. Each possibility produces a CONTRADICTION, so the

assumption that L is regular is false and hence L is not regular.

Note. According to Gerstein (page 187): “. . . automata also have important ap-

plications in other aspects of computer science, particularly in the analysis of al-

gorithms and in the study of the field called computational complexity.”

4.5. Languages and Finite Automata 10

Note. Chris Bernhardt’s popular-level book, Turing’s Vision: The Birth of Com-

puter Science, MIT Press (2016), gives descriptions of finite automata, the λ-

calculus, and Turing machines. In his Chapter 3, “Finite Automata,” he uses

much the same notation as we have seen here to describe several examples of finite

automata. He considers strings of 0’s and 1’s and gives a finite automata that

(1) accept a string containing an odd number of 1’s, (2) accept a string that ends

with “01,” and (3) accept a string containing and even number of 1’s (to illustrate

how the negation of a question can be addressed). He also give two examples of

problems that cannot be solved by finite automata. One is the question of whether

a binary string has the same number of 0’s and 1’s. The second example, related to

the last example (though requiring a slightly different alphabet), is the considera-

tion a string of left and right parentheses to see if they are properly balanced. For

example, in “(()(()()))” the parentheses are balanced, but in “())(” they are not

(even though in “())(” there are the same number of left and right parentheses).

For more information on Turing machines, see Bernhardt’s Chapter 4 and my

online notes on Computational Complexity. Computational Complexity is not an

ETSU Department of Mathematics and Statistics class (though the Department of

https://faculty.etsu.edu/gardnerr/Computational-Complexity/Notes-Computational-Complexity-Papadimitriou.htm

4.5. Languages and Finite Automata 11

Computer Science has a class “Formal Languages and Computational Complexity,”

CSCI 5610); these online notes (in preparation as of summer 2022) are meant

for self-study and as a supplement to the graph-theoretic algorithm material of

Mathematical Modeling Using Graph Theory (MATH 5870).

Revised: 7/4/2022

https://faculty.etsu.edu/gardnerr/5340/notes-Math-Modeling-GT.htm

