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Chapter 6. Number Theory

Note. The topic of number theory is a central part of mathematics! It is a pity

that it is not a formal part of the ETSU (undergraduate or graduate) curriculum!

Your only opportunities for an introduction to this area is in this class (Mathemat-

ical Reasoning, MATH 3000) and maybe in History of Mathematics (MATH 3040).

The ETSU undergraduate catalog includes the class Elementary Number Theory

(MATH 3120) with class description: “Introduces number theory, treating divis-

ibility, congruencies, linear Diophantine equations, and quadratic residues. Some

history of the development of the discipline also is included.” We will not consider

Diophantine equations nor quadratic residues in these notes, nor will will give much

history. However, I have online notes for Elementary Number Theory which include

the topics in the catalog description (and more), along with a moderate amount

of history. Unfortunately, the Elementary Number Theory (MATH 3120) class has

not been formally offered in my memory (my unreliable memory extends back to

the beginning of the new millennium on this; the class may have been offered by

one of my colleagues as an Independent Study in this time frame, but not that I

recall). This might be an appropriate time to lament the total absence of a set

theory class at ETSU, as well. . .

Note. Gerstein states (see page 278): “. . . in recent years [number theory] has been

applied to problems associated with the transmission and encryption of numerical

data. (Pure mathematics has become applied mathematics!) Number theory is

unique in its abundance of appealing problems whose statements are accessible to

elementary school students, but whose solutions have eluded mathematicians for

centuries.”

https://faculty.etsu.edu/gardnerr/3120/Number-Theory-notes.htm
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6.1. Operations

Note. In this section, we define a binary operation and some of its properties. We

define the algebraic structures of group, ring, and field.

Definition 6.1. Let S be a nonempty set. A binary operation on S is a function

∗ : S × S → S. A set on which one or more operations have been defined is an

algebraic structure, algebraic system, or binary algebraic structure. We denote the

image of (a, b) ∈ S × S under ∗ as a ∗ b.

Definition 6.2. Let ∗ be an operation on S. Then

(i) ∗ is commutative if a ∗ b = b ∗ a for every a, b ∈ S,

(ii) ∗ is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for every a, b, c ∈ S, and

(iii) An element e ∈ S is an identity element of ∗ if for all a ∈ S we have both

e ∗ a = a and a ∗ e = a.

Example 6.3. (a) Three binary operations on R are ordinary addition, subtrac-

tion, and multiplication: (a, b)
+7→ a + b, (a, b)

−7→ a − b, (a, b)
·7→ a · b. Notice that

addition and multiplication are commutative, but subtraction is not. The additive

identity is 0 and the multiplicative identity is 1; there is no subtractive identity.

Notice that division is not a binary operation on R, since division by 0 is undefined.

We will define a “ring” below, and R along with addition and multiplication are
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an example of a ring (as are the Z, Q, and C). It is true that subtraction is a

binary operation on these sets of numbers, but there is no such thing as subtrac-

tion (or division) when we consider the algebraic properties of these rings; there is

only addition (though we can consider the addition of an additive inverse so that

we have a + (−b)) and multiplication (though we can consider multiplication by a

multiplicative inverse [other than the multiplicative inverse of 0] so we have ab−1).

(b) If A is any set, then union and intersection are binary operations that are

commutative and associative on the power set P (A). The empty set is an identity

for ∪ and A is an identity for ∩. (We’ll see below that identities are unique.)

(c) Let Σ be a finite alphabet with the set of words Σ∗ (see Section 4.5. Lan-

guages and Finite Automata). The concatenation of two words is the word obtained

by following one word be the other. Concatenation is a binary operation on Σ∗. It

is associative but not commutative, and the identity is the empty word ε.

(f) Let A be a nonempty set, and let F (A) denote the set of all function from

A to A. Then compositions of functions is a binary operation on F (A). It is

associative but not commutative and the identity map iA is the identity.

Note. If set A is small of size n and ∗ is a binary operation (or simply an “opera-

tion,” as Gerstein uses the term) then we can make a n× n “multiplication table”

where we augment the matrix with a first column of the elements of A and augment

is with a first row of the elements of A, as given below. We then put ai ∗ aj in the

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-5.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-5.pdf
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(i, j) entry of the original matrix:

∗ a1 a2 a3

a1 a3 a1 a2

a2 a2 a3 a1

a3 a1 a2 a1

Notice that the operation is not commutative (since the matrix is not symmetric)

and there is no identity. When you are introduced to groups in Introduction to

Modern Algebra (MATH 4127/5127), some small groups will be presented in this

way.

Theorem 6.4. An operation has at most one identity.

Definition 6.5. Suppose the operation ∗ on S has identity element e, and let

a ∈ S. If there is an element b ∈ S satisfying a ∗ b = b ∗ a = e, then b is an inverse

of a with respect to ∗.

Theorem 6.6. Suppose ∗ is an associative operation on S with identity e. If an

element a ∈ S has an inverse, then it has only one inverse.

Note. In Example 6.3(a), we see that the inverse of a ∈ R under addition is −a.

The inverse of each nonzero a ∈ R under multiplication is a−1 = 1/a, and 0 has no

multiplicative inverse. In Example 6.3(b), ∅ is the identity on P (A) under ∪, but

no nonempty set in P (A) has an inverse. In Example 6.3(c), the empty word ε is

the identity on Σ∗ under concatenation, but no nonempty word has an inverse.
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Definition. A nonempty set S with an associative operation ∗ is a semigroup. A

semigroup with an identity element and such that every element has an inverse is

a group. A ring is a nonempty set R on which two associative operations, usually

denoted + and ·, where R under + is a group, + is commutative, and · distributes

over +. If · in a ring is commutative then R is a commutative ring. A commutative

ring with a multiplicative identity and such that every non-additive-identity (i.e.,

nonzero) element has a multiplicative inverse is a field.

Examples. The natural numbers N under addition form a semigroup, but not a

group under addition, since there is no additive identity and no additive inverses.

The integers Z under addition are a group with identity 0 and the inverse of a is

−a. The integers under addition and multiplication form a ring, but not a field

since there are no multiplicative inverses (except for 1 and −1). The rationals Q,

the reals R, and C each form a field. These three fields differ, for example, in which

equations can be solved. The equation x2 = 2 has no solution in Q, but does have

a solution in R and C. The equation x2 = −1 has no solution in Q nor in R, but

does have a solution in C. In fact, every polynomial equation has a solution in C;

that is, C is algebraically closed.
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