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6.10. Number Theory and Cryptography:

A Brief Glimpse

Note. In this section, we very briefly discuss applications of number theory to

cryptography. We contrast this with coding theory, and give three examples.

Note. In cryptography, the goal is to disguise a message so that the message is

difficult to read. This is opposed to coding theory in which the goal is to encode

a message in such a way that it is easy to read (and errors can be corrected).

Cryptography is discussed in my online notes for Applied Abstract Algebra (not a

formal ETSU class); see Chapter 5. These notes also describe coding theory (see

Chapter 4). Codes are discussed in my online notes for Applied Combinatorics and

Problem Solving (MATH 3340); see Chapter 6. (Several of these notes are still in

preparation.)

Note. Cryptography is needed to protect transmitted information from unwanted

viewers. For example, cryptography is used in the transmission of military strategy,

corporate security, or simply in protecting banking information like your account

number. Most cryptographic applications involve encrypting messages using num-

bers and then scrambling the numbers in some complicated way that requires the

recipient to have a key to unscramble the message.

https://faculty.etsu.edu/gardnerr/Applied-Abstract-Algebra/notes-applied-algebra2.htm
https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics-Merris2.htm
https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics-Merris2.htm
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Example 6.10.A. Suppose we want to send a message using our ordinary alphabet

of 26 letters. Assign the letters in order to the elements of the set {0, 1, 2, . . . , 25}.

These are the plaintext symbols. Choose an element a ∈ Z∗
26 and an element

b ∈ {0, 1, 2, . . . , 25}; see Section 6.8. Primitive Roots and Card Shuffling for details

on Z∗
26. The values a and b are the keys of the encryption. When the message

y ≡ ax+b (mod 26) is received, the original message x is computed as x ≡ a−1(y−b)

(mod 26). Notice that a−1 ∈ Z∗
26 exists; this is why it is necessary to choose a from

Z∗
26 and not simply from Z26. This is an example of an affine encryption.

Note. In public key cryptography, a message is encrypted and the extra information

beyond a key is required to read the message, with this extra information called

a secret key which is unavailable to the sender of the message. We now give two

examples of public key cryptosystems.

Example 6.10.B. In the RSA cryptosystem positive integers m and k, announced

publicly, make up the “public key” K = (m, k). Parameter k is chosen to be

relatively prime to ϕ(m) and P = {0, 1, . . . ,m − 1} is used as the plaintext and

the “cypertext.” The encryption is performed by the function eK : P → P where

eK(x) ≡ xk (mod m). The decryption is given by dK : P → P where dK(y) ≡ yu

(mod m) and u is a solution to the congruence ku ≡ 1 (mod ϕ(m)). With ku =

1 + tϕ(m) for some t we then have

dK(eK(x)) ≡ (xk)u ≡ xku ≡ x1+tϕ(m) ≡ x · (xϕ(m))t ≡ x · (1)t ≡ x (mod m),

by Euclid’s Theorem (Theorem 6.52) and Corollary 6.43. So dK does in fact decrypt

as desired. But if K = (m, k) is public information, then we must depend on some

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-8.pdf


6.10. Number Theory and Cryptography: A Brief Glimpse 3

property of m and k that make it difficult to decrypt the message. Large prime

numbers are used; m is taken as the product m = pq of two large prime numbers

p and q. If p and q are known, then we have ϕ(m) = ϕ(p)ϕ(q) = (p− 1)(q − 1) by

Example 6.50. Then the solution u to the congruence ku ≡ 1 (mod ϕ(m)) can be

solved, and dK(y) ≡ yu (mod m) can be applied to decrypt. But the difficulty comes

with finding the factorization m = pq if p and q are sufficiently large. (Gerstein

says: “Imagine primes with a hundred digits or more.” See page 347.) Without the

factorization, the computation of ϕ(m) is “out of reach” so that funding u cannot

be done. But the factorization is used in order to find ϕ(m). If one could “easily”

find ϕ(m), then the decryption would be easy. But notice that if we know that

m = pq (but we don’t know p or q) and we know ϕ(m), then we have

ϕ(m) = (p− 1)(q − 1) = pq − (p + q) + 1 = m− (p + q) + 1.

Since q = m/p, this equation becomes ϕ(m) = m − (p + m/p) + 1 or pϕ(m) =

mp− p2 −m + p or p2 + (ϕ(m)−m− 1)p + m = 0. Then solving for p in terms of

m and ϕ(m) (which then determines q = m/p) we have

p =
m− ϕ(m) + 1±

√
(m− ϕ(m) + 1)2 − 4m

2
.

But since p (and q) are directly related to m and ϕ(m) by this formula, it is

just as difficult to compute p and q directly as it is to compute ϕ(m) directly;

these parameters are “computationally equivalent.” Research reveals that factoring

large numbers is “extraordinarily difficult,” so we know that computing ϕ(m) is

equivalently difficult. So publicly knowing K = (m, k) is not the valuable/difficult

information, but instead the security of the encryption relies on the unknown factors

p and q.
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Example 6.10.C. A second public key cryptosystem is called the El Gamal sys-

tem, introduced in 1985. The public key is of the form K = (p, r, β), where p is

a large prime, r is a primitive root mod p, and β is an element of Z∗
p. The de-

cryption requires knowing the discrete logarithm logr β (while the encryption does

not require know this); see Definition 6.79. Without giving details, if β is “chosen

appropriately” then finding logr β can be “extremely difficult” (using Gerstein’s

terms from page 348).
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