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6.3. Divisibility: The Fundamental Theorem

of Arithmetic

Note. In this length section, we introduce the idea of divisibility and explore it

in connection with prime numbers. We prove the Division Algorithm (in Theorem

6.17), discuss the Euclidean Algorithm for computing a greatest common divisor,

and use these results to prove the Fundamental Theorem of Arithmetic (Theorem

6.29). Most of the material is also contained in my online notes for Elementary

Number Theory (MATH 3120) on Section 1. Integers and Section 2. Unique Fac-

torization.

Definition 6.13. Let a, b ∈ Z with a 6= 0. We say that a divides b, or b is divisible

by a, or a is a divisor or factor of b, or b is a multiple of a if b = ac for some c ∈ Z.

The statement that a divides b is denoted a | b, and is negation is denotes a 6 | b. If

a | b and |a| < |b| then a is a proper divisor of b.

Theorem 6.15. Let a, b, c ∈ Z. Then

(a) If a | b and b 6= 0 then |a| ≤ |b|.

(b) If a | b and a | c then a | (b + c) and a | (b− c).

Note. Recall that a prime number is an integer p > 1 that has no integer factoriza-

tion p = ab in which both a > 1 and b > 1. In Section 2.10. Mathematical Induction

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
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and Recursion we saw that every integer n ≥ 2 is a product of primes numbers (see

Theorem 2.71). The fact that there are infinitely many prime numbers is famously

presented in Euclid’s Elements of Geometry in Book IX as Proposition 20. A proof

(similar to the one given below) is given in Elementary Number Theory (MATH

3120) in Theorem 2.1, “Euclid’s Theorem,” of Section 2. Unique Factorization.

Some history of this result (and its connection to the Euclidean Algorithm) can be

found in my online notes for Introduction to Modern Geometry-History (MATH

4157/5157) on Section 2.4. Books VII and IX. Number Theory.

Theorem 6.16. (Euclid, circa 300 bce)

There are infinitely many prime numbers.

Definition. If integers n and n + 2 are both prime, then n and n + 2 are twin

primes.

Note. Examples of twin prime pairs are {3, 5}, {5, 7}, {11, 13}. . . Though is has

been known that there are infinitely many prime numbers for over two millenia, it is

not known whether or not there are infinitely many twin prime pairs. Another un-

solved conjecture is Goldbach’s Conjecture that speculates that every even integer

greater than 2 can be expressed as a sum of two primes. This conjecture is named

after German mathematician Christian Goldbach (March 18, 1690–November 20,

1764) who mentioned it in a letter to Swiss mathematician Leonhard Euler (April

15, 1707–September 18, 1783).

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-2-10.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://faculty.etsu.edu/gardnerr/Geometry/Geometry-History-notes.htm
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
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Note. In long division of integers, you are familiar with finding a quotient and

remainder. As mentioned by Gerstein (page 290), when we divide 581 by 16 we

get:

We can write this either
581

16
= 36+

5

16
or 581 = 16 ·36+5. This idea is generalized

in the Division Algorithm. This is addressed for quotients of positive integers in

Elementary Number Theory (MATH 3120) in Section 1. Integers (see Theorem

1.2). The result holds for any quotient of integers, positive or negative (as long as

we don’t try to divide by 0). This more general form of the Division Algorithm is

seen in Introduction to Modern Algebra (MATH 4127/5127) in Section I.6. Cyclic

Groups (see Theorem 6.3). We now state and prove our version of the Division

Algorithm which requires that we divide by a positive integer.

Theorem 6.17. Division Algorithm.

Let a, b ∈ Z, with b > 0. Then there are integers q and r such that a = bq + r and

0 ≤ r < b. Moreover, q and r are uniquely determined by these conditions. Here,

q is the quotient and r is the remainder.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/I-6.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/I-6.pdf
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Definition 6.18. Let a and b be integers, not both 0. An integer d 6= 0 is a

common divisor of a and b if d | a and d | b. A common divisor d of a and b is a

greatest common divisor if d > 0 and if every common divisor of a and b is also a

divisor of d. The greatest common divisor of a and b is denoted (a, b).

Note. The next result shows that a greatest common divisor exists between any

two integers (not both 0) and is unique. We can therefore speak of “the” greatest

common divisor.

Theorem 6.20. If a and b are integers, not both 0, then a and b have a unique

greatest common divisor.

Note. In the proof of Theorem 6.20, we see that the greatest common divisor of a

and b is a linear combination of a and b. We promote this result to the level of a

corollary.

Corollary 6.21. Let d = (a, b). Then there are integers x and y such that

d = ax + by.

Note. When claiming the existence of some mathematical object, we can establish

this existence by actually constructing the object. This is not what we did in the

proof of Theorem 6.20, but instead indirectly showed the existence. You might
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be familiar with this idea in the setting of Calculus 1 where you might show the

existence of a zero of the function f(x) = x3 + x− 5 using the Intermediate Value

Theorem (the function is negative at x = 0, positive at x = 2, and a continuous

function, so f(x) = 0 for some x between 0 and 2); you could also show the existence

of a zero by actually finding the zero, but I doubt that you know how to do that (I

don’t!). In Linear Algebra, you might show that a square matrix has an inverse by

showing that its determinant is nonzero; you could also actually find the inverse.

From Theorem 6.20, we know of the existence of a greatest common divisor but we

do not have a process to find the “gcd.” We now turn our attention to finding the

greatest common divisor, (a, b), of two nonzero integers a and b. First, we need a

lemma.

Lemma 6.22. If a = bq + r then (a, b) = (b, r).

Note. The Euclidean Algorithm allows us to find a greatest common divisor.

It is stated and proved in Elementary Number Theory (MATH 3120) on Section

1. Integers (see Theorem 1.3). It appears in Euclid’s Elements as Proposition 2

of Book VII; for more history, see my online notes for Introduction to Modern

Geometry-History (MATH 4157/5157) on Section 2.4. Books VII and IX. Number

Theory.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/Geometry-History-notes.htm
https://faculty.etsu.edu/gardnerr/Geometry/Geometry-History-notes.htm
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-2-4.pdf
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Note 6.23. Euclid’s Algorithm for Computation of (a, b).

As opposed to stating Euclid’s Algorithm as a theorem (as is done in Section 1.

Integers of Elementary Number Theory, MATH 3120), we just give a description

of it and explain why it works. We start with integers a and b, where b > 0.

Divide b into a, getting a quotient q1 and remainder r1: a = bq1 + r1 with

0 ≤ r1 < b. If r1 = 0 then b = (a, b).

If r1 6= 0 then divide r1 into b to get quotient q2 and remainder r2: b = r1q2 + r2

with 0 ≤ r2 < r1. If r2 = 0 then r1 = (a, b).

If r2 6= 0 then divide r2 into r1 to get quotient q3 and remainder r3: r1 = r2q3 + r3

with 0 ≤ r3 < r2. If r3 = 0 then r2 = (a, b).

...

If ri 6= 0 then divide ri into ri−1 to get quotient qi+1 and remainder ri+1: ri−1 =

riqi+1 + ri+1 with 0 ≤ ri+1 < ri. If ri+1 = 0 then ri = (a, b).

Notice that the process has to end because we have 0 ≤ ri+1 < ri for each i. It

ends at some nonzero rk By repeated application of Lemma 6.22,

(a, b) = (b, r1) = (r1, r2) = · · · = (rk, rk−1) = (rk, 0) = rk.

Examples 6.24 and 6.25. Applying the Euclidean Algorithm to find (2880, 504)

we have:

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
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Corollary 6.21 claims that there are integers x and y such that (a, b) = ax + by.

We can find x and y for a = 2800 and b = 504 from the above computation as

follows. Converting these first three computations from division to multiplicative

statements we have 2880 = 504 ·5+360, 504 = 360 ·1+144, and 360 = 144 ·2+72.

Combining these equations gives

72 = 360 + 144 · (−2) = 360 + (504− 360) · (−2) = 360 · 3 + 504 · (−2)

= (2880− 504 · 5) · 3 + 504 · (−2) = 2880 · 3 + 504 · (−17).

So we have (a, b) = ax + by where (a, b) = (2800, 504) = 72, x = 3, and y = −17.

Note. In Theorem 2.71 we say that every integer n ≥ 2 can be expressed as a

product of primes factors. The Fundamental Theorem of Arithmetic claims that

this factoring is unique. The next step in this direction is the following lemma.

Theorem 6.26. Let p be a prime number and let a and b be integers. Then the

following implication holds: If p | ab then either p | a or p | b.
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Note. The net corollary follows from Theorem 6.26 by the Principle of Mathemat-

ical Induction.

Corollary 6.27. Let p be prime, and let a1, a2, . . . , at ∈ Z. If p | a1a2 · · · at, then

p | ai for some index i.

Note. The next corollary shows that the converse of Theorem 6.26 actually holds.

Corollary 6.28. Let m be an integer greater than 1. Then m is prime if and only

if the following implication holds for all a, b ∈ Z: If m | ab then either m | a or m | b.

Note. We are now equipped to prove our main result of this section.

Theorem 6.29. The Fundamental Theorem of Arithmetic.

Let n be an integer greater than 1. Then there are prime numbers p1, p2, . . . , pr

such that n = p1p2 · · · pr. Moreover, this factorization of n is unique in the following

sense: If n = q1q2 · · · qs also, with the q’s prime, then the q’s are just a rearrange-

ment of the p’s. That is, r = s and, if we label the primes so that p1 ≤ p2 ≤ · · · ≤ pr

and q1 ≤ q2 ≤ · · · ≤ qs, then pi = qi for 1 ≤ i ≤ r.
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Corollary 6.30. Let n ∈ Z with |n| ≥ 2. Then n has a unique factorization

of the form n = ±pα1
1 pα2

2 · · · pαt
t where t ≥ 1, the pi are distinct primes satisfying

p1 ≤ p2 ≤ · · · ≤ pt, and αi ≥ 1 for 1 ≤ i ≤ t. This factorization is the standard or

canonical factorization of n.

Note. With what we have established, proving the irrationality of
√

2 is straight-

forward. The existence of irrational numbers were known to the Pythagoreans,

according to Proclus (412 ad–485 ad). For more historical details, see my online

notes for Introduction to Modern Geometry-History (MATH 4157/5157) on Sec-

tion 1.4. The Regular Pentagon (in which the main irrational number of interest is

the golden ration, Φ = (
√

5 + 1)/2).

Theorem 6.31. The real number
√

2 is irrational.

Exercise 6.33. Suppose a and b are integers such that for distinct primes p1, p2, . . . , pt,

and integers αi ≥ 0 and βi ≥ 0 for 1 ≤ i ≤ t we have a = ±pα1
1 pα2

2 · · · pαt
t and

b = ±pβ1

1 pβ2

2 · · · pβt

t . Then

(a, b) = p
min{α1,β1}
1 p

min{α2,β2}
2 · · · pmin{αi,βi}

i · · · pmin{αt,βt}
t .

Definition 5.43. Let S be a set of integers that contains at least one nonzero

integer. The least common multiple of S is the smallest positive integer that is a

multiple of every member of S. The least common multiple of {r1, r2, . . . , rm} is

denoted lcm(r1, r2, . . . , rm) or [r1, r2, . . . , rm].

https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-4.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-OW/Geometry-OW-1-4.pdf
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Note 6.3.A. Suppose, as in the notation above, that a = ±pα1
1 pα2

2 · · · pαt
t and

b = ±pβ1

1 pβ2

2 · · · pβt

t . Let

R = p
max{α1,β1}
1 p

max{α2,β2}
2 · · · pmax{αi,βi}

i · · · pmax{αt,βt}
t .

Notice that R is a positive multiple of a and of b, so that the lcm satisfies [a, b] ≤ R.

Since a | [a, b] and b | [a, b], then pαi

i and pβi

i both divide [a, b], and hence p
max{αi,βi}
i

divides [a, b] for 1 ≤ i ≤ t. So in the standard factorization of [a, b], prime piappears

at least to the power max{αi, βi}. Hence R | [a, b], and so R ≤ [a, b]. Therefore,

R = [a, b] and the lcm of a and b is

[a, b] = p
max{α1,β1}
1 p

max{α2,β2}
2 · · · pmax{αi,βi}

i · · · pmax{αt,βt}
t .

We can now related (a, b) and [a, b].

Theorem 6.35. If a and b are nonzero integers, then [a, b] = |ab|/(a, b).

Revised: 2/21/2022


