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6.4. Congruence; Divisibility Tests

Note. In this length section, we introduce the equivalence relation of congruence

modulo m on the integers Z. We state and prove some properties of this equiv-

alence relation and use it to establish two number theory “tricks” concerning the

divisibility of a number by 9 and by 11. By convention, all numbers in this section

are assumed to be integers.

Definition 6.37. Fix m > 0. Numbers a and b are congruent modulo m if a − b

is divisible by m. This is denoted a ≡ b (mod m). The number m is the modulus

of the congruence relation.

Example 6.38. We have the congruences 3 ≡ −5 (mod 4), 0 ≡ 15 (mod 5),

−7 ≡ 5 (mod 6), and 5743 ≡ 43 (mod 100). We show below (in Theorem 6.41)

that congruence modulo m really is an equivalence relation on Z.

Note. Congruence modulo m is a central idea in number theory. For example,

in Elementary Number Theory (MATH 3120) the idea is covered in Section 4.

Congruences, in which the idea of “clock arithmetic” is mentioned (see also Example

6.40(b) below) and some history of congruence is given (congruence modulo m was

introduced by Carl Friedrich Gauss (April 30, 1777–February 23, 1855) in his 1801

Disquisitiones Arithmeticae). Congruence relations are further explored in this

class in Section 5. Linear Congruences, and applications of congruence relations

play a role throughout the rest of the Elementary Number Theory course.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-4.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-4.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-5.pdf
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Note 6.4.A. Notice that we can translate the congruence a ≡ b (mod m) into the

equations a− b = mk or a = b + mk for some k ∈ Z.

Example 6.40(b). This example rather literally illustrates the idea of “clock

arithmetic” and its cyclic nature. Suppose it is now 5 am. We want to know the

time 784 hours from now. Since it is now 5 hours past midnight, after the given

time interval it will be 789 hours past midnight. Division by 12 yields the equation

789 = 12 · 65 + 9. This equation tells us that over the span of 789 hours, a clock’s

hour hand will complete 65 full revolutions (taking the time to noon) and will then

mark off nine more hours. The result: in 784 hours from now the time will be 9

pm. Of course, we could use military time (in which a clock marks off 24 hours in a

day and does not require the am/pm distinction of times), in which case we would

consider the equation 789 = 24 · 32 + 21 and the congruence statement 789 ≡ 21

(mod 24). In this case, we conclude that the time will be 21 hours (or, in civilian

time, 21− 12 = 9 pm, as before).

Theorem 6.41. Fix m > 0. Then congruence modulo m is an equivalence relation

on Z.

Note. The next result shows that congruence modulo m can, in some cases, behave

like equations (i.e., like equality).
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Theorem 6.42. If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

Note. The next corollary follows form Theorem 6.42 by applying the Principle of

Mathematical Induction.

Corollary 6.43. Suppose the congruences a1 ≡ b1 (mod m), a2 ≡ b2 (mod m),

. . . , an ≡ bn (mod m) hold. Then

n∑
i=1

ai ≡
n∑

i=1

bi (mod m) and
n∏

i=1

ai

n∏
i=1

bi (mod m).

In particular, if a ≡ b (mod m), then an ≡ bn (mod m) for all n ≥ 1.

Note. In our base 10 number system, we represent a nonnegative integer n in

decimal form as n = atat−1 . . . a1a0, where 0 ≤ ai ≤ 9, and interpret this as

n = at · 10t + at−1 · 10t−1 + · · ·+ a1 · 10 + a0 =
t∑

i=0

ai · 10i.

Of course this can also be extended to nonnintegers if we allow for series (instead

of sums) and infinite decimal representations.

Theorem 6.45. Every nonnegative integer is congruent modulo 9 to the sum of

its decimal digits. Symbolically, if 0 ≤ ai ≤ 9 for 0 ≤ i ≤ t, then

t∑
i=0

ai · 10i ≡
t∑

i=0

ai (mod 9).
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Corollary 6.46. Test for Divisibility by 9.

An integer is a multiple of 9 if and only if the sum of its decimal digits is a multiple

of 9.

Note. The previous two results are ultimately based on the fact that 9 is 1 less

than 10 and that we are considering decimal digits. So it is not surprising that

there is a related result if we use any base to represent a number. If b ≥ 2 and n is

any positive integer, then to write n in base b is to express n as a sum of the form

n =
t∑

i=0

aib
i with 0 ≤ ai ≤ b− 1.

In this case, we represent n as n = atat−1 · · · a0 base b. The congruence in Theorem

6.45 can then be generalized as:

t∑
i=0

aib
i ≡

∑
i=0

ai (mod b− 1).

Corollary 6.46 then generalizes to the statement: An integer is a multiple of b− 1

if and only if the sum of its digits in base b representation is a multiple of b − 1.

For more on base b representations, see my online notes for Elementary Number

Theory (MATH 3120) on Section 13. Numbers in Other Bases.

Theorem 6.48. (Test for Divisibility by 11).

An integer n with decimal representation n = atat−1 . . . a0 is divisible by 11 if and

only if the number at − at−1 + at−2 − · · · ± a1 ∓ a0 is divisible by 11.

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-16.pdf
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Example 6.49. The number 319,245,386,597,518,260 is divisible by 11 by Theorem

6.48, because

3− 1 + 9− 2 + 4− 5 + 3− 8 + 6− 5 + 9− 7 + 5− 1 + 8− 2 + 6− 0 = 22

is divisible by 11.
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