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6.5. Introduction to Euler’s Function

Note. In this section, we consider numbers relatively prime to to a given positive

integer n. Euler’s function, ϕ(n), gives a count of these relatively prime numbers.

Like in the previous section, all numbers in this section are assumed to be integers.

Much of this material is covered in Elementary Number Theory (MATH 3120); see

my online ntoes for this class on Section 9. Euler’s Theorem and Function.

Definition. Numbers (i.e., integers) a and b are relatively prime (or coprime) if

their greatest common divisor is 1: (a, b) = 1.

Definition. If m is a positive integer, then denote the number of positive integers

less than or equal to m and relatively prime to m as ϕ(m), called the Euler ϕ

function (or the totient function). Symbolically,

ϕ(m) = #{k | 1 ≤ k ≤ m and (k,m) = 1}.

Example 6.50/Note. Notice that ϕ(6) = 2 because among 1, 2, 3, 4, 5, 6 the

numbers relatively prime with 6 are 1 and 5. We have ϕ(1) = 1. If p is prime then

(and only then) ϕ(p) = p−1. In Section 6.6. The Inclusion-Exclusion Principle and

Euler’s Function we will have a formula for computing ϕ(n) in terms of the standard

factorization of n given by the Fundamental Theorem of Arithmetic (Theorem

6.29).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-9.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-6.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-6.pdf
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Note. In Euler’s Theorem below, we give a congruence relation involving Euler’s

ϕ function. We first need a preliminary lemma.

Lemma 6.51.

(i) If m | ab and (m, a) = 1, then m | b.

(ii) (The Cancellation Law.) If ax ≡ ay (mod m) and (a, m) = 1, then x ≡ y

(mod m).

Theorem 6.52. Euler’s Theorem.

Suppose m is positive and (x, m) = 1. Then xϕ(m) ≡ 1 (mod m).

Corollary 6.53. Fermat’s Theorem/Fermat’s Little Theorem.

If p is prime and (a, p) = 1, then ap−1 ≡ 1 (mod p).

Note. For given integer m, exploration of the question “Is m prime?” can be

difficult. One could check all of the primes up to
√

m to see if they divide m or not

(this gives a conclusive answer to the question). Fermat’s Theorem (with a = 2)

implies that if m is an odd prime then 2m−1 ≡ 1 (mod m). By the contrapositive

of this, we see that if 2m−1 6≡ 1 (mod m) then m is not prime. This approach is

inconclusive when 2m−1 ≡ 1 (mod m). These claims are true, but that does not

mean that they are computationally practical.
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Definition. Let m > 0. For any x, by the Division Algorithm (Theorem 6.17),

x = mq + r for unique integers q and r where 0 ≤ r ≤ m − 1. That is, there is

unique r with 0 ≤ r ≤ m − 1 such that x ≡ r (mod m). The nonnegative integer

r is the residue of x modulo m, denoted “x (mod m).” Replacing a number by its

residue is called reduction mod m.

Note. Reduction mod m can greatly simplify computations. For example, suppose

we want to find the residue 716 (mod 11). Reducing as we go and taking advantage

of the fact that the exponent is a power of 2, we have:

72 = 49 ≡ 5 (mod 11)

74 ≡ 52 ≡ 3 (mod 11)

78 ≡ 32 ≡ 9 (mod 11)

716 ≡ 92 ≡ 4 (mod 11).

So 716 ≡ 4 (mod 11). By the way, 716 = 33,232,930,569,601 so we see that we have

definitely simplified the computation!

Example 6.54. We now apply a technique similar to that above to check if n = 529

is prime. We use Fermat’s Theorem (Corollary 6.53) will a = 2 and “alleged prime”

p = 529 to check if 2528 ≡ 1 (mod 529). If this is false (which, as we’ll see, it is),

then p is not prime. Notice that p− 1 = 528 = 512 + 16 = 29 + 24. So we consider
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(with the help of a calculator, since the numbers are ugly):

223

= 28 = 256

224

= (256)2 = 65526 ≡ 469 (mod 529)

225 ≡ (469)2 = 219961 ≡ 426 (mod 529)

226 ≡ (226)2 = 181476 ≡ 29 (mod 529)

227 ≡ (29)2 = 841 ≡ 312 (mod 529)

228 ≡ (312)2 = 97344 ≡ 8 (mod 529)

229 ≡ 82 = 64 (mod 529)

This gives (by Corollary 6.43) that

2258 = 229 · 224 ≡ 64 · 469 = 30016 ≡ 392 6≡ 1 (mod 529).

This is the case in which Fermat’s Theorem is conclusive; we conclude that 529

is not prime (in fact, 529 = (23(2). Notice that this computation required only

six squaring and reducing steps (followed by one multiplication step). If we had

checked all primes up to
√

n =
√

529 = 23, so this is a simplified approach. Gerstein

makes an argument (see page 313) that the number of squaring and reducing steps

grows logarithmically in n, whereas testing divisibility of individual primes grows

(something like)
√

n. So for very large n, Fermat’s Theorem offers a significantly

more efficient algorithm for testing a number for primeness.
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