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6.6. The Inclusion-Exclusion Principle and

Euler’s Function

Note. In this section, we state (without a general proof) the Inclusion-Exclusion

Principle (in Corollary 6.57) concerning the cardinality of the union of several

(finite) sets. This is then used to derive a formula for ϕ(n) in terms of the standard

factorization of n (in Theorem 6.59). In this section, we denote the number of

elements in set X as |X| (as is more traditional), as opposed to #X as done

previously.

Note 6.6.A. For finite sets A and B, we saw in Corollary 4.16 of Section 4.1.

Cardinality; Fundamental Counting Principles that

|A ∪B| = |A|+ |B| − |A ∩B|.

We want to consider a finite collection of finite sets, A1, A2, . . . , An and express

the cardinality of the union of these sets in terms of the cardinalities of the sets

themselves (similar to Corollary 4.16). For three sets, we have:∣∣∪3
i=1Ai

∣∣ = |(A1 ∪ A2) ∪ A3|

= |A ∪ A2|+ |A3| − |(A1 ∪ A2) ∩ A3| by Corollary 4.16

= |A1 ∪ A2|+ |A3| − |(A1 ∩ A3) ∪ (A2 ∩ A3)| by Theorem 2.16(c)

= |A1|+ |A2| − |A1 ∩ A2|+ |A3| − (|A1 ∩ A3|+ |A2 ∩ A3|

−|A1 ∩ A2 ∩ A3|)

applying Corollary 4.16 to|A1 ∪ A2| and to |(A1 ∩ A3) ∪ (A2 ∩ A3)|

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf


6.6. The Inclusion-Exclusion Principle and Euler’s Function 2

= |A1|+ |A2|+ |A3| − (|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|)

+|A1 ∩ A2 ∩ A3|

=
3∑

i=1

|Ai| −

( ∑
1≤i<j≤3

|Ai ∩ Aj|

)
+ |A1 ∩ A2 ∩ A3|.

Notice that the first terms adds up the cardinalities of the three sets, but this counts

some elements twice (or three times). The second term subtracts the count of the

elements that are contained in pairs of sets, but this if an element was in all three

sets then it is removed twice here. In the third term, the count of those elements

removed twice by the second term are added back. That is, the first term includes

all elements (but includes some multiple times), the second term then excludes the

elements that were counted more than once by the first term (but removes some

terms too many times), then the third term includes the terms removed too many

times by the second term. That’s why this idea is called the Inclusion-Exclusion

Principle. Similar to the argument above, we can inductively prove the following

general result. A proof is omitted here, but can be found in my online notes for

Intermediate Probability and Statistics (not an official ETSU class) on Section 1.10.

The Probability of a Union of Events (notice Theorem 1.10.2).

Theorem 6.56. Let A1, A2, . . . , An be sets. Then

|∪n
i=1Ai| =

n∑
i=1

|Ai| −

( ∑
1≤i1<i2≤n

|Ai1 ∩ Ai2|

)
+

( ∑
1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3|

)

−

( ∑
1≤i1<i2<i3<i4≤n

|Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4|

)
+ · · ·+ (−1)n+1|A1 ∩ A2 ∩ · · ·An|.

https://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-10.pdf
https://faculty.etsu.edu/gardnerr/Intermediate-Prob-Stats/notes-DeGroot4/DeGroot4-1-10.pdf
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Note. Gerstein does not take Theorem 6.56 as the Inclusion=Exclusion Principle

(unlike what you are likely to see in a statistics class; for example, see my online

notes for Mathematical Statistics 1 (STAT 4047/5047) on Section 1.3. The Proba-

bility Set Function (notice Theorems 1.3.A and 1.3.B). Instead he expresses it as

follows and uses this new version to find a formula for ϕ(n).

Corollary 6.57. Inclusion-Exclusion Principle.

Let S be a finite set and suppose A1, A2, . . . , An are subsets of S. Define S0 = |S|

and, for 1 ≤ k ≤ n, define

Sk =
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik|.

Then |A′
1 ∩A′

2 ∩ · · · ∩A′
n| =

∑n
k=0(−1)kSk. (Recall that A′

i is the complement of A

in S.)

Example 6.58. A sports club has 54 members. Of those, 34 play tennis, 22 play

golf, and 10 play both. Eleven members play handball and, of those, 6 play tennis,

4 play golf, and 2 play all three sports. How many club members participate in

none of the sports?

Solution. Let A1 be the set of those who play tennis, A2 be the set of those who

play golf, A3 be the set of those who play handball, and let S be the set of all sports

club members. Then |S| = 54, |A1| = 34, |A2| = 22, |A3| = 11, |A1 ∩ A2| = 10,

|A1 ∩ A3| = 6, |A2 ∩ A3| = 4, and |A1 ∩ A2 ∩ A3| = 2. Notice that the set of

those who participate in none of the sports is A′
1 ∩ A′

2 ∩ A′
3. With n = 3 in the

https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-3.pdf
https://faculty.etsu.edu/gardnerr/4047/notes-Hogg-McKean-Craig/Hogg-McKean-Craig-1-3.pdf


6.6. The Inclusion-Exclusion Principle and Euler’s Function 4

Inclusion-Exclusion Principle (Corollary 6.57), we have

|A′
1 ∩ A′

2 ∩ A′
3| =

3∑
k=0

(−1)kSk

= S0 − S1 + S2 − S3 = (54)− (31 + 22 + 11) + (10 + 6 + 4)− (2) = 5 . �

Note 6.6.B. We next use the Inclusion-Exclusion Principle to derive a formula

for ϕ(n), given a standard factorization of n, n = pα1
1 pα2

2 · · · pαr
r . First, define Ai =

{m ∈ Nn | pi |m}, so that the elements of Ai are all multiples of pi less than or

equal to n. Since pi is prime, then A′
i = Nn − Ai is the set of positive integers less

than or equal to n that are relatively prime with pi. Since p1, p2, . . . , pr are the only

prime divisors of n, then set of all numbers less than or equal to n that are relatively

prime with n are in the set A′
1∩A′

2∩ · · · ∩A′
r. That is, ϕ(n) = |A′

1∩A′
2∩ · · · ∩A′

r|.

Note 6.6.C. Notice that if k is a positive integer and K |n, then there are precisely

n/k positive multiples of k less than or equal to k; namely, k, 2k, 3k, . . . , (n/k −

1)k, (n/k)n = k. Since the elements of Ai are the multiples of pi less than or equal

to n, the |Ai| = n/pi. Now Ai1 ∩ Ai2 is the set of all multiples of both pi1 and pi2

less than or equal to n; that is, all multiples of pi1pi2 less than or equal to n so that

|Ai1 ∩ Ai2| =
n

pi1pi2

. Similarly

|Ai1 ∩ Ai2 ∩ Ai3| =
n

pi1pi2pi3

, |Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4| =
n

pi1pi2pi3pi4

, . . .

|Ai1 ∩ Ai2 ∩ · · · ∩ Air | =
n

pi1pi2 · · · pir

.
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Theorem 6.59. If n has standard factorization pα1
1 pα2

2 · · · pαr
r , then

ϕ(n) = n
∏

1≤i≤r

(
1− 1

pi

)
= n

∏
1≤i≤r

(
pi − 1

pi

)
=
∏

1≤i≤r

pαi−1
i

∏
1≤i≤r

(pi − 1).

Moreover, if (m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Corollary 6.60. If p is prime and k ≥ 1, then ϕ(pk) = pk−1(p− 1) = pk − pk−1.

Example 6.61. Corollary 6.60, along with the fact that ϕ(mn) = ϕ(m)ϕ(n) when

(m, n) = 1 of Theorem 6.59, gives an efficient way to compute ϕ(n), provided we

have a standard factorization of n. Consider n = 280,500 = 22 · 3 · 53 · 11 · 17. We

have

ϕ(280,500 = ϕ(22 · 3 · 53 · 11 · 17)

= ϕ(22)ϕ(3)ϕ(53)ϕ(11) = ϕ(17) by Theorem 6.59)

= (21 · 1)(30 · 2)(52 · 4)(110 · 10)(170 · 16) by Corollary 6.60

= (2)(2)(100)(10)(16) = 64,000 . �

Note. A table of values of ϕ(n) starts as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10

A Javascript App is online at JavaScripter.net which will compute ϕ(n) for n up

to 20 digits. The table above suggests the next theorem.

Theorem 6.62. If n > 2 then ϕ(n) is even.

http://www.javascripter.net/math/calculators/eulertotientfunction.htm
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Theorem 6.63. If n is a positive integer, then ϕ(n) >
√

n/2. Hence, limn→∞ ϕ(n) =

∞.

Note. We might think that every positive even integer is the value of ϕ(n) for

some n. That is, we might think that ϕ maps N onto the positive even integers.

The next theorem shows that this is not the case.

Theorem 6.64. If m = 2 · 52k, with k ∈ N, then there is no integer n such that

ϕ(n) = m.

Note. Gerstein concludes the discussion of Euler’s ϕ function with some open

conjectures.

1. In 1907, Robert Carmichael published the paper “On Euler’s ϕ-Function,”

Bulletin of the American Mathematical Society, 13(5), 241–243 (1907). In this he

claimed to have proved that if k is in the range of ϕ, then there are at least two

distinct natural numbers n and n′ such that ϕ(n) = ϕ(n′) = k. An error was found

in his proof and in 1922 he had to issue a retraction. This has become known

as Carmichael’s Conjecture. Kevin Ford proved that the conjecture holds for all

n < 101010

in “The Distribution of Totients,” The Ramanujan Journal, 2(1-2), 67-

151 (1998). A copy of this paper is available on Kevin Ford’s website (see Theorem

6; accessed 2/26/2022). However, the general conjecture remains unproved.

2. We know that ϕ(p) = p − 1 if and only if p is prime. For n composite,

we cannot have ϕ(n) = n − 1, but it is possible that ϕ(n) | (n − 1). Derrick

https://faculty.math.illinois.edu/~ford/wwwpapers/totients.pdf
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H. Lehmer conjectured that no such composite n exist in “On Euler’s Totient

Function,” Bulletin of the American Mathematical Society, 38, 745-751 (1932).

Thsi paper is online on the AMS website (accessed 2/26/2022).

3. Gerstein mentions a conjecture that there are infinitely many n such that

ϕ(n) = ϕ(n+1), and claims that there are 391 such values of n less that 200,000,000.

He doesn’t give references and your humble instructor is unsuccessful in finding

more details.

Revised: 2/27/2022

https://www.ams.org/journals/bull/1932-38-10/S0002-9904-1932-05521-5/S0002-9904-1932-05521-5.pdf

