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6.7. More on Prime Numbers

Note. In this section, we explore Fermat numbers and give some of their his-

tory. We give two more proofs that there are infinitely many primes, one based on

analytic number theory (which we very briefly discuss).

Definition. A natural number of the form Fn = 22n

+ 1 is a Fermat number. For

n ∈ {0, 1, 2, 3, 4} we haveF0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65,537; each

of these are prime and are called the Fermat primes.

Note. Pierre de Fermat (August 17, 1601–January 12, 1665) was a French lawyer,

government official, and amateur mathematician.

Pierre de Fermat (August 17, 1601–January 12, 1665),

image from Fermat’s Library website.

He was friends with several mathematicians of his time and he corresponded with

https://fermatslibrary.com/
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many others. He was recognized as a top mathematician, but he did not bother

to give clean, clear proofs of his ideas and he did not publish his work (though

some of his ideas made it into publication as supplements to the work of others). A

more detailed biography can be found in my online notes for Elementary Number

Theory (MATH 3120) on Section 6. Fermat’s and Wilson’s Theorems. Fermat

thought that all “Fermat numbers” were in fact prime. His correspondence on

this is detailed in Raymond Archibald’s “Remarks on Klein’s ‘Famous Problems

of Elementary Geometry’,” The American Mathematical Monthly, 21(8), 247–259

(October 1914). A copy is available through JSTOR (accessed 2/26/2022). In Au-

gust 1640 Fermat wrote to French mathematician Bernard Frénicle de Bessy that

“. . . here is something which pleases me greatly: it is that I am almost persuaded

that numbers of the progression 220

, 221

, 223

, . . . , augmented by 1, are prime num-

bers, as 3, 5, 17, 257, 65537, 4,294,967,297. . . I have not an exact demonstration,

but I have excluded such a large number of divisors by infallible proofs, and have

so many side lights which bear out my thought, that I would find difficulty in con-

vincing myself of error.” In October 1640 he wrote de Bessy again that “I have no

more doubt at this moment than I had previously.” Fermat wrote to Blaise Pascal

14 year later on August 29, 1654 when he expressed a bit of frustration: “The

demonstration of the proposition is very difficult and I confess to you that I have

not yet fully found it; I should not propose that you seek it, had I already reach the

goal.” The difficulty of manipulating such large numbers (by hand) is reflected in

the fact that it wasn’t until 1832 that Leonhard Euler (April 15, 1707–September

18, 1783) showed in his first number theory publication that F5 is composite and

that F5 = 225

+ 1 = 232 + 1 = 4,294,967,297 = 41 × 6,700,417. He published

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-6.pdf
https://www.jstor.org/stable/2974245
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his result as “Observationes de theoremate quodam Fermatiano aliisque ad nu-

meros primos spectantibus,” Commentarii Academiae Scientiarum Petropolitanae,

6, 103–107 (1732/33). This is available online from the The Euler Archive (in Latin

unfortunately; accessed 2/26/2022). This leaves the mathematical community of

the 18th century with the limited knowledge that the largest Fermat number which

is prime is F4 = 65,537. In fact, almost 300 years later we live with the same limited

knowledge! The Wikipedia page on Fermat numbers (accessed 2/26/2022) lists the

following unresolved questions about Fermat systems:

1. Is Fn composite for all n > 4?

2. Are there infinitely many Fermat primes?

3. Are there infinitely many composite Fermat numbers?

Note. The next result explains why Fermat insisted on an exponent of 2 which is

itself a power of 2.

Theorem 6.66. If k ∈ N and n = 2k + 1 is prime, then k is a power of 2.

Note. The next result, due to George Pólya (December 13, 1887–September 7,

1985), will allow us to show that any two Fermat numbers are relatively prime.

Lemma 6.67. For each n ≥ 1, Fn − 2 = F0F1 · · ·Fn−1.

https://scholarlycommons.pacific.edu/euler-works/26/
https://en.wikipedia.org/wiki/Fermat_number
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Definition. A set {11, a2, . . .} of integers is pairwise relatively prime if (ai, aj) = 1

for all i 6= j.

Theorem 6.68. The Fermat numbers are pairwise relatively prime.

Note. Notice that if there were only finitely many primes, then (by the Funda-

mental Theorem of Arithmetic, Theorem 6.29) we wouldn’t have enough primes to

make infinitely many pairwise relatively prime Fermat numbers. So we have a sec-

ond argument that there are infinitely many primes (so we state Euclid’s Theorem

6.16 again).

Corollary 6.69. There are infinitely many primes.

Note. We quickly introduce an application of calculus ideas to number theory.

This vague idea is part of analytic number theory. One aspect of this is explored

in complex analysis. See my online Complex Analysis (MATH 5510/5520) notes

on Section VII.8. The Riemann Zeta Function; notice Euler’s Theorem (Theorem

VII.8.17) and the list of exercises following it. Leonhard Euler was the first to

use analysis ideas in a number theory setting. He used series to prove that there

are infinitely many prime numbers in his “Variae observations circa series infini-

tas,” Commentarii Academiae Scientiarum Petropolitanae, 9 160–188 (1737); this

is available on the The Euler Archive (in Latin; accessed 2/27/2022).

https://faculty.etsu.edu/gardnerr/5510/notes/VII-8.pdf
https://scholarlycommons.pacific.edu/euler-works/72/
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Note 6.7.A. We recall three properties of series from Calculus 2 (MATH 1920).

1. Suppose {an}n≥0 and {bn}n≥0 are sequences of nonnegative numbers. The

product of the infinite series
∑∞

n=0 an and
∑∞

n=0 bn is the series
∑∞

n=0 cn, where

cn =
∑n

i=0 aibn−i. If the two given series converge to L1 and L2, then
∑∞

n=0 cn

converges with limit L1L2. See my online Calculus 2 notes on Section 10.7.

Power Series (notice Theorem 19, The Series Multiplication Theorem for Power

Series).

2. If 0 < r < 1, then
∞∑

n=0

rn =
1

1− r
. This is a geometric series with ratio r. See

my Calculus 2 notes on Section 10.2. Infinite Series.

3. The series 1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑
n=1

1

n
diverges. This is the harmonic series.

See my Calculus 2 notes on Section 10.3. The Integral Test.

4. If
∑∞

n=0 |an| converses and b1, b2, . . . , bn, . . . is any rearrangement of the se-

quence {an}n≥0 then
∑∞

n=0 |bn| converges and
∑∞

n=0 bn =
∑∞

n=0 an.See my Cal-

culus 2 notes on Section 10.6. Alternating Series, Absolute and Conditional

Convergence (notice Theorem 17, The Rearrangement Theorem for Absolutely

Convergent Series).

We now have the equipment to give Euler’s proof.

Theorem 6.71. There are infinitely many prime numbers.

Note. Notice that we now have three proofs that there are infinitely many prime

numbers. We have Euclid’s proof (Theorem 6.16), a proof based on Fermat numbers

(Corollary 6.69), and Euler’s proof using series.
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