
7.2. The Gaussian Integers 1

7.2. The Gaussian Integers

Note. In this section, we introduce an algebraic structure (the Gaussian integers)

and establish several number theoretic results in this structure. The algebraic

structure is a complex analogy of the (real) integers.

Note 7.2.A. The complex numbers are the set , C = {a + bi | a, b ∈ R}. For

complex numbers a + bi and c + di we have the sums and products:

(a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi)(c + di) = (ac− bd) + (ad + bc)i.

The complex numbers form a field (which effectively means that all the usual

algebraic properties, such as commutativity and distribution, hold). Every nonzero

complex number has a multiplicative inverse, 1/(a + bi) = (a− bi)/(a2 + b2). The

modulus (or absolute value) of a complex number z = a + bi is |z| =
√

a2 + b2,

and the conjugate of z = a + bi is z = a − bi. Notice that |z|2 = zz. The norm

of z, denoted N(z), is the modulus squared of z: N(z) = N(a + bi) = a2 + b2.

The norm of an Gaussian integer is itself a nonnegative integer, and N satisfies:

(1) N(α) = 0 if and only if α = 0, and (2) N(αβ) = N(α)N(β). A mapping

satisfying these two properties is sometimes called a multiplicative norm (see my

online notes for Introduction to Modern Algebra 2 [MATH 4137/5137] on Section

IX.47. Gaussian Integers and Multiplicative Norms and notice Definition 47.6).

Definition 7.13. The Gaussian integers is the subset Z[i] = {a + bi | a, b ∈ Z} of

C.

https://faculty.etsu.edu/gardnerr/4127/notes/IX-47.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/IX-47.pdf
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Note 7.2.B. The Gaussian integers form a commutative ring, but do not form

a field since multiplicative inverses may not be present. Since N is an integer

valued multiplicative norm on the Gaussian integers, then for α ∈ Z[i] invertible,

we must have αα−1 = 1 so that 1 = N(1) = N(αα−1) = N(α)N(α−1). Since N is

integer valued, then N(α) = N(α−1) = 1. So, the only elements of Z[i] that have

multiplicative inverses (in a ring, these are called units) are −1, 1, i, and −i; these

are called Gaussian units of G-units.

Definition. For α, β ∈ Z[i], if β = αγ for some γ ∈ Z[i], the α divides β, denoted

α | β. If α ∈ Z[i] and ε is a Gaussian unit, then α = ε(ε−1α) is a trivial factorization

in Z[i]. A nontrivial factorization of an element α 6= 0 in Z[i] is a factorization of

the form α = βγ in which both β and γ are non-Gaussian-units.

Note. Notice that if α = βγ is a nontrivial factorization of α, then |α|2 = |β|2|γ|2

or N(α) = N(β)N(γ). Since neither β nor γ is a unit, then 1 < N(β), N(γ) <

N(α), N(β) |N(α), and N(γ) |N(α). So a nontrivial factorization in Z[i] gives a

nontrivial factorization of positive integers in Z (namely of the associated norms).

Repeated factoring then yields a descending sequence of positive integers of norms;

a decreasing sequence of positive integers must end, so that the nontrivial factoring

must end. We then have for any nonzero unit α ∈ Z[i] has a factorization of the

form α = π1π2 · · ·πr where each πi is a nonunit which has no nontrivial factorization

in Z[i]. This gives us a way to define a prime Gaussian integer, which will lead to

our Fundamental Theorem of Arithmetic in Z[i].
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Definition. Nonzero nonunit πi ∈ Z[i] is a Gaussian prime (or G-prime) if it has

no nontrivial factorization in Z[i].

Note 7.2.C. Determining which Gaussian integers are Gaussian primes is more

involved that finding prime integers. One approach to test nonzero nonunit α for

primeness is to test each nonunit β satisfying M(β) |N(α) to see if its a divisor

of α. Notice that an integer prime in Z may not be prime in Z[i]; we have 2 =

(1 + i)(1 − i) in Z[i] and 5 = (1 + 2i)(1 − 2i). However, 3 is both a prime and a

Gaussian prime because for nontrivial factorization 3 = βγ in Z[i], we would have

9 = N(3) = N(β)N(γ) and hence N(β) = N(γ) = 3, but there is no a + bi ∈ Z[i]

with N(a + bi) = a2 + b2 = 3. We now work our way through several results that

eventually yield our Fundamental Theorem of Arithmetic in Z[i].

Theorem 7.14. Division Algorithm in Z[i].

Let α, β ∈ Z[i], with β 6= 0. Then there exist q, r ∈ Z[i] such that α = βq + r, with

0 ≤ N(r) < N(β).

Example 7.15. Consider α = 12 + 8i and β = 4 − i. To illustrate the Division

Algorithm in Z[i], we seek q and r in Z[i] such that α = 12+8i = (4−i)q+r = βq+r.

First, we express α/β in the form u + vi:

12 + 8i

4− 1
=

12 + 8i

4− i

4 + i

4 + i
=

40 + 44i

17
=

40

17
+

44

17
i = u + vi.

With u = 40/17 = 2 + 6/17 and v = 44/17 = 2 + 10/17, we take x = 2 and y = 3

to get q = x + yi = 2 + 3i. For r, we know that α = βq + r or r = α − βq so
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r = (12 + 8i) − (4 − i)(2 + 3i) = (12 + 8i) − (11 + 10i) = 1 − 2i. Notice that

N(r) = N(1− 2i) = 5 < 17 = N(4− i) = N(β), as needed.

Note. We now largely follow the proof of the Fundamental Theorem of Arithmetic

in Z (Theorem 6.29). The condition of “least positive” in the setting of Z is replaced

in Z[i] with “of minimal norm.”

Definition 7.16. Let α, β ∈ Z[i], not both 0. A common divisor d of α and β in

Z[i] is a greatest common divisor of α and β if every common divisor of α and β is

a divisor of d.

Note. In the setting of Z we have an ordering, namely the usual greater-than/less-

than of > and <, so that “greatest” takes its meaning from the ordering. However,

there is no corresponding ordering in C; see my supplemental notes for Complex

Analysis 1 (MATH 5510) on Ordering the Complex Numbers. So we cannot use

the ordering in Z[i] to choose a greatest common divisor (though we could use the

norm N). Also, we may not have unique greatest common divisors; for any given

greatest common divisor d of two Gaussian integers, unit multiples of d are also

greatest common divisors: d, −d, di, and −di.

Theorem 7.17. If Gaussian integers α and β are not both 0, then they have a

greatest common divisor d, and there are elements x, y ∈ Z[i] such that d = xα+yβ.

https://faculty.etsu.edu/gardnerr/5510/Ordering-C.pdf
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Note. Theorem 7.17 is the Z[i] version of Theorem 6.20 for Z. However, (strict)

uniqueness of a greatest common divisor need not hold in Z[i], as mentioned above.

Note. Notice that if d is a greatest common divisor of α and β, then so is εd for any

G-units ε (recall that in Z[i] the only G-units are ±1 and ±i). Greatest common

divisors can be computed using the Euclidean Algorithm in Z[i], just as in Z. For

the use of the Euclidean Algorithm in Z, see Note 6.23 in Section 6.3. Divisibility:

The Fundamental Theorem of Arithmetic. For the use of the Euclidean Algorithm

in the setting of positive integers, see my online notes for Elementary Number

Theory (MATH 3120) on Section 1. Integers and notice Theorem 1.3.

Definition. Let α ∈ Z[i]. Then any β = εα where ε is a Gauss unit (either ±1 or

±i) is an associate of α.

Note. Notice that for α ∈ Z[i] and π a Gauss prime, π | α if and only if α = πβ =

(επ)(ε−1)β) for some β ∈ Z[i] and for every Gauss unit ε. That is, Gauss prime

π divides α is and only if every associate of π divides α. Hence if π - α then no

associate of π divides α do that the greatest common divisor of π and α is 1.

Theorem 7.19. Let π be a Gauss prime, let α1, α2, . . . , αk ∈ Z[i], and suppose

π |
∏k

i=1 αi. Then π | αi for some i.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-1.pdf
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Theorem 7.20. Fundamental Theorem of Arithmetic in Z[i]

Every nonzero nonunit Gaussian integer α is a product of G-primes. This factor-

ization is unique in the following sense: If α = π1π2 · · ·πr = σ1σ2 · · ·σs are two

factorizations of α into G-primes, then r = s and the σi’s are associates of the πi’s;

more precisely, there is a permutation of the subscripts 1, 2, . . . , r making σi an

associate of πi for 1 ≤ i ≤ r.

Note. The next theorem gives a way to recognize Gaussian primes in terms of the

multiplicative norm and prime integers. Notice that Gerstein now refers to prime

integers as “Z-primes.”

Theorem 7.21. The Gaussian primes are of the following two kinds.

(a) Gaussian integers of the form α = a + bi with ab 6= 0 such that N(α) is a

Z-prime.

(b) Z-primes that are not sums of two squares in Z, and their associates in Z[i].

Note. We now shift our attention to the condition given in Theorem 7.21(b). It

has become desirable to determine which Z-primes are also Gaussian primes. For

example, as shown above in Note 7.2.C, 2 and 5 are Z-primes but are not Gauss

primes. In exploring this question, we need the following number theory result.
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Theorem 7.22. Wilson’s Theorem.

If p is a prime number then (p− 1)! ≡ −1 (mod p).

Note. We also see Wilson’s Theorem in Elementary Number Theory (MATH

3120). See my online notes for that class on Section 6. Fermat’s and Wilson’s

Theorems and notice Theorem 6.2. As a corollary, we have the following.

Corollary 7.23. If p is prime and p ≡ 1 (mod 4) then the congruence x2 ≡ −1

(mod p) is solvable.

Note. We now have the equipment to classify the Z-primes which are also Gaussian

primes. The following result also appears in Elementary Number Theory (MATH

3120); see Section 18. Sums of Two Squares and notice Lemma 18.4.

Theorem 7.24. An odd prime number p is a Gaussian prime if and only if p ≡ 3

(mod 4).

Note. Notice that most of these results deal with “odd primes,” and so omit

prime 2 from the conversation. The next corollary is consistent with our previous

observation that 5 is not a Gaussian prime.

Corollary 7.25. Let p be an odd prime number. Then p is a sum of two squaes

in Z if and only if p ≡ 1 (mod 4).
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https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-6.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-6.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-18.pdf

